
Convex Optimization
ScAi Lab Study Group

Zhiping (Patricia) Xiao

University of California, Los Angeles

Winter 2020

Outline 2

Introduction: Convex Optimization
Convexity
Convex Functions’ Properties
Definition of Convex Optimization

Convex Optimization
General Strategy
Learning Algorithms
Convergence Analysis

Examples

Source of Materials 3

Textbook:

I Convex Optimization and Intro to Linear Algebra
by Prof. Boyd and Prof. Vandenberghe

Course Materials:

I ECE236B, ECE236C offered by Prof. Vandenberghe

I CS260 Lecture 12 offered by Prof. Quanquan Gu

Notes:

I My previous ECE236B notes and ECE236C final report.

I My previous CS260 Cheat Sheet.

Related Papers:

I Accelerated methods for nonconvex optimization

I Lipschitz regularity of deep neural networks: analysis and
efficient estimation

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://vmls-book.stanford.edu/vmls.pdf
http://www.seas.ucla.edu/~vandenbe/ee236b/ee236b.html
http://www.seas.ucla.edu/~vandenbe/ee236c.html
https://piazza.com/ucla/fall2018/cs260/resources
http://web.cs.ucla.edu/~patricia.xiao/files/ECE_236B_Course_Notes.pdf
http://web.cs.ucla.edu/~patricia.xiao/files/ECE236C_Final_Report.pdf
https://web.cs.ucla.edu/~patricia.xiao/files/CS_260_Cheatsheet_version2.pdf
https://arxiv.org/abs/1611.00756
https://papers.nips.cc/paper/7640-lipschitz-regularity-of-deep-neural-networks-analysis-and-efficient-estimation
https://papers.nips.cc/paper/7640-lipschitz-regularity-of-deep-neural-networks-analysis-and-efficient-estimation

Introduction: Convex Optimization

q

Notations 5

I iff: if and only if

I R+ = {x ∈ R | x ≥ 0}
I R++ = {x ∈ R | x > 0}
I intK: interior of set K, not its boundary.

I Generalized inequalities (textbook 2.4), based on a proper
cone K (convex, closed, solid, pointed — if x ∈ K and
−x ∈ K then x = 0):
I x �K y ⇐⇒ y − x ∈ K
I x ≺K y ⇐⇒ y − x ∈ intK

I Positive semidefinite matrix X ∈ Sn+, ∀y ∈ Rn, yTXy ≥ 0
⇐⇒ X � 0.

Convexity of Set 6

Set C is convex iff the line segment between any two points in
C lies in C, i.e. ∀x1, x2 ∈ C and ∀θ ∈ [0, 1], we have:

θx1 + (1− θ)x2 ∈ C

Both convex and nonconvex sets have convex hull, which is
defined as:

conv C = {
k∑
i=1

θixi | xi ∈ C, θi ≥ 0, i = 1, 2, . . . , k,

k∑
i=1

θi = 1}

Convexity of Set (Examples from Textbook) 7

Figure: Left: convex, middle & right: nonconvex.

Figure: Left: convex hull of the points, right: convex hull of the
kidney-shaped set above.

Operations that Preserve Convexity of Sets I 8

The most common operations that preserve convexity of convex
sets include:

I Intersection

I Image / inverse image under affine function

I Cartesian Product, Minkowski sum, Projection

I Perspective function

I Linear-fractional functions

Operations that Preserve Convexity of Sets II 9

Convexity is preserved under intersection :

I S1, S2 are convex sets then S1 ∩ S2 is also convex set.

I If Sα is convex for ∀α ∈ A, then ∩α∈ASα is convex.

Proof: Intersection of a collection of convex sets is convex set.
If the intersection is empty, or consists of only a single point,
then proved by definition. Otherwise, for any two points A, B
in the intersection, line AB must lie wholly within each set in
the collection, hence must lie wholly within their intersection.

Operations that Preserve Convexity of Sets III 10

An affine function f : Rn → Rm is a sum of a linear function
and a constant, i.e., if it has the form f(x) = Ax+ b, where
A ∈ Rm×n, b ∈ Rm, thus f represents a hyperplane.

Suppose that S ⊆ Rn is convex and then the image of S under
f is convex:

f(S) = {f(x) | x ∈ S}

Also, if f : Rm → Rn is an affine function, the inverse image of
S under f is convex :

f−1(S) = {x | f(x) ∈ S}

Examples include scaling αS = {f(x) | αx, x ∈ S} (α ∈ R) and
translation S + a = {f(x) | x+ a, x ∈ S} (a ∈ Rn); they are
both convex sets when S is convex.

Operations that Preserve Convexity of Sets IV 11

Proof: the image of convex set S under affine function
f(x) = Ax+ b is also convex.

If S is empty or contains only one point, then f(S) is obviously
convex. Otherwise, take xS , yS ∈ f(S). xS = f(x) = Ax+ b,
xS = f(y) = Ay + b. Then ∀θ ∈ [0, 1], we have:

θxS + (1− θ)yS = A(θx+ (1− θ)y) + b

= f(θx+ (1− θ)y)

Since x, y ∈ S, and S is convex set, then θx+ (1− θ)y ∈ S, and
thus f(θx+ (1− θ)y) ∈ f(S).

Operations that Preserve Convexity of Sets V 12

The Cartesian Product of convex sets S1 ⊆ Rn, S2 ⊆ Rm is
obviously convex:

S1 × S2 = {(x1, x2) | x1 ∈ S1, x2 ∈ S2}

The Minkowski sum of the two sets is defined as:

S1 + S2 = {x1 + x2 | x1 ∈ S1, x2 ∈ S2}

and it is also obviously convex.
The projection of a convex set onto some of its coordinates is
also obviously convex. (consider the definition of convexity
reflected on each coordinate)

T = {x1 ∈ Rm | (x1, x2) ∈ S for some x2 ∈ Rn}

Operations that Preserve Convexity of Sets VI 13

We define the perspective function P : Rn+1 → Rn, with domain
domP = Rn × R++, as P (z, t) = z/t.
The perspective function scales or normalizes vectors so the last
component is one, and then drops the last component.

We can interpret the perspective function as the action of a
pin-hole camera. (x1, x2, x3) through a hold at (0, 0, 0) on plane
x3 = 0 forms an image at −(x1/x3, x2/x3, 1) at x3 = −1. The
last component could be dropped, since the image point is fixed.

Proof: That this operation preserves convexity is already
proved by affine function + projection preserve convexity.

Operations that Preserve Convexity of Sets VII 14

A linear-fractional function f : Rn → Rm is formed by
composing the perspective function with an affine function.
Consider the following affine function g : Rn → Rm+1:

g(x) =

[
A
cT

]
x+

[
b
d

]
where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, d ∈ R.
Followed by a perspective function P : Rm+1 → Rm we have:

f(x) = (Ax+ b)/(cTx+ d), dom f = {x | cTx+ d > 0}

And it naturally preserves convexity because both affine
function and perspective function preserve convexity.

Convexity of Function 15

Convex Functions

Strict Convex Functions

Strong Convex Functions

Figure: The three commonly-seen types of convex functions and their
relations. In brief, strong convex functions ⇒ strict convex functions
⇒ convex functions.

Convexity of Function 16

f : Rn → R is convex iff it satisfies:

I dom f is a convex set.

I ∀x, y ∈ dom f , θ ∈ [0, 1], we have the Jensen’s inequality :

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

f is strictly convex iff when x 6= y and θ ∈ (0, 1), strict
inequality of the above inequation holds.

f is concave when −f is convex, strictly concave when −f
strictly convex, and vice versa.

f is strong convex iff ∃α > 0 such that f(x)− α‖x‖2 is convex.
‖·‖ is any norm.

Convexity of Function 17

Proof: strong convex functions ⇒ strict convex functions ⇒
convex functions.

That all strict convex functions are convex functions, and that
convex functions are not necessarily strict convex. Strong
convexity implies, ∀x, y ∈ dom f, θ ∈ [0, 1], x 6= y, ∃α > 0:

f(θx+ (1− θ)y)− α‖θx+ (1− θ)y‖2 (1.1)

≤ θf(x) + (1− θ)f(y)− θα‖x‖2 − (1− θ)α‖y‖2

Something we didn’t prove yet but is true: ‖·‖2 is strictly
convex. We need it for this proof.

‖θx+ (1− θ)y‖2 < θ‖x‖2 + (1− θ)‖y‖2

Convexity of Function 18

(proof continues)

α‖θx+ (1− θ)y‖2 < θα‖x‖2 + (1− θ)α‖y‖2

t = −α‖θx+ (1− θ)y‖2 + θα‖x‖2 + (1− θ)α‖y‖2 > 0

(1.1) is equivalent with:

f(θx+ (1− θ)y) + t ≤ θf(x) + (1− θ)f(y)

where t > 0, thus:

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

Convexity of Function 19

Figure: Convex function illustration from Prof. Gu’s Slides. This
figure shows a typical convex function f , and instead of our
expression of x and y he used u & v instead.

Convexity of Function 20

Commonly-seen uni-variate convex functions include:

I Constant: C

I Exponential function: eax

I Power function: xa (a ∈ (−∞, 0] ∪ [1,∞), otherwise it is
concave)

I Powers of absolute value: |x|p (p ≥ 1)

I Logarithm: − log(x) (x ∈ R++)

I x log(x) (x ∈ R++)

I All norm functions ‖x‖
I “The inequality follows from the triangle inequality, and the

equality follows from homogeneity of a norm.”

Affine functions are Convex & Concave 21

An affine function f : Rn → Rm, f(x) = Ax+ b, where
A ∈ Rm×n, b ∈ Rm, is convex & concave (neither strict convex
nor strict concave).

Conversely, all functions that are both convex and concave are
affine functions.

Proof: ∀θ ∈ [0, 1], x, y ∈ dom f , we have:

f(θx+ (1− θ)y) = A(θx+ (1− θ)y) + b

= θ(Ax+ b) + (1− θ)(Ay + b)

= θf(x) + (1− θ)f(y)

0th-Order Characterization 22

f is convex iff it is convex when restricted to any line that
intersects its domain.
In other words, f is convex iff ∀x ∈ dom f and ∀v ∈ Rn, the
function:

g(t) = f(x+ tv)

is convex. dom g = {t | x+ tv ∈ dom f}

This property allows us to check convexity of a function by
restricting it to a line.

1st-Order Characterization 23

Suppose f is differentiable (its gradient ∇f exists at each point
in dom f , which is open). Then f is convex iff:

I dom f is a convex set

I ∀x, y ∈ dom f :

f(y) ≥ f(x) +∇f(x)T (y − x)

It states that, for a convex function, the first-order Taylor
approximation (f(x) +∇f(x)T (y − x) is the first-order Taylor
approximation of f near x) is in fact a global underestimator of
the function.

Could also be interpreted as “tangents lie below f”.

Proof is on next page.

1st-Order Characterization: Proof 24

This proof comes from CVX textbook page 70, 3.1.3.

Let x, y ∈ dom f , t ∈ (0, 1], s.t. x+ t(y − x) ∈ dom f , then, by
convexity we have:

f(x+ t(y − x)) = f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)

tf(y) ≥ (t− 1)f(x) + f(x+ t(y − x))

f(y) ≥ f(x) +
f(x+ t(y − x))− f(x)

t

take limt→0 we have:

f(y) ≥ f(x) +∇f(x)T (y − x)

It is not specifically mentioned in the textbook, but also
referred to as subgradient inequality elsewhere.

Subgradient1
25

Figure: By using subgradient g ∈ ∂f(x) instead of gradient ∇f(x),
where ∀u,w ∈ dom f , f(u) ≥ f(w) + gT (u− w), we can handle the
cases where the functions are not differentiable. ∂f(x) is called
sub-differential, the set of sub-gradients of f at x.

f is convex iff for every x ∈ dom f , ∂f(x) 6= ∅.
1In Prof. Gu’s Slides.

1st-Order Characterization w. Strong Convex 26

First we assume that α is the maximum value of the parameter
before the norm.

Also note that all norms are equivalent 2, meaning that
∃0 < C1 ≤ C2 for ∀a, b, x:

C1‖x‖b ≤ ‖x‖a ≤ C2‖x‖b

and thus it is okay to treat ‖·‖ as `2 norm.
Consider the Taylor formula:

f(y) ≈ f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(x)T (y − x)

2
https://math.mit.edu/~stevenj/18.335/norm-equivalence.pdf

https://math.mit.edu/~stevenj/18.335/norm-equivalence.pdf

2nd-Order Characterization 27

We now assume that f is twice differentiable, that is, its
Hessian or second derivative ∇2f exists at each point in dom f ,
which is open. Then f is convex iff:

I dom f is convex

I f ’s Hessian is positive semidefinite, ∀x ∈ dom f :

∇2f(x) � 0

When f : Rn → R, it is simply:

∇2f(x) ≥ 0

(*) When f is strongly convex with constant m:

∇2f(x) � mI ∀x ∈ dom f

2nd-Order Characterization: More on Bound 28

∇2f(x) � 0

Then for strong convex, where ∇2
(
f(x)− α‖x‖2

)
� 0, we have:

∇2f(x) � ∇2
xα‖x‖2

and we often take the bound of ∇2
xα‖x‖2 as m. For instance, in

the case of ∇2
xα‖x‖22, m = 2α.

Note that α and m are usually different constants. But it
doesn’t matter such much in practice.

Sublevel Sets & Superlevel Sets 29

The α-sublevel set of a function f : Rn → R is defined as:

Cα = {x ∈ dom f | f(x) ≤ α}

Sublevel sets of a convex function are convex, for any value of α.

Proof: ∀x, y ∈ Cα, f(x) ≤ α, ∀θ ∈ [0, 1], f(θx+ (1− θ)y) ≤ α,
and hence θx+ (1− θ)y ∈ Cα.

The converse is not true: a function can have all its sublevel
sets convex (a.k.a. quasiconvex), but not convex itself. e.g.
f(x) = −ex is concave in R but all its sublevel sets are convex.

If f is concave, then its α-superlevel set is a convex set:

{x ∈ dom f | f(x) ≥ α}

Graph and Epigraph 30

Figure: The illustration of graph and epigraph from textbook.
Epigraph of f is the shaded part, graph of f is the dark line.

Graph and Epigraph 31

The graph of a function f : Rn → R is a subset of Rn+1:

{(x, f(x)) | x ∈ dom f}

The epigraph of it is also subset of Rn+1, defined as:

epi f = {(x, t) | x ∈ dom f, f(x) ≤ t}

The link between convex sets and convex functions is
via the epigraph: A function is convex iff its epigraph is
a convex set.

Proof of Epigraph’s Property I 32

Statement: A function f is convex iff its epigraph epi f is a
convex set.

First, we assume that f is convex and show epi is convex.

∀(x1, y1), (x2, y2) ∈ epi f , θ ∈ [0, 1], and:

(x̃, ỹ) = θ(x1, y1) + (1− θ)(x2, y2)

Point (x, y) ∈ epi f then y ≥ f(x).

f(x) is convex, thus:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

Proof of Epigraph’s Property II 33

Then we have:

ỹ = θy1 + (1− θ)y2
≥ θf(x1) + (1− θ)f(x2) (∵ epigraph)

≥ f(θx1 + (1− θ)x2) (∵ convexity)

= f(x̃)

ỹ ≥ f(x̃), thus (x̃, ỹ) ∈ epi f , and epi f is proved to be convex.

Proof of Epigraph’s Property III 34

Next, we prove that when epi f is convex, the f must be
convex:

∀x1, x2 ∈ dom f , and θ ∈ [0, 1], then the points (x1, f(x1)) and
(x2, f(x2)) must be in epi f (on int f , to be specific).

(x̃, ỹ) = θ(x1, f(x1)) + (1− θ)(x2, f(x2))

From the convexity of epi f , (x̃, ỹ) must also be included in
epi f , and thus:

ỹ = θf(x1) + (1− θ)f(x2) ≥ f(x̃) = f(θx1 + (1− θ)x2)

This is essentially satisfies the Jensen’s inequality, and f has to
be convex.

Why Convex Optimization 35

(Mathematical) Optimization Problems

Convex Optimization Problems

Linear Programming
Problems

Least-Squares
Problems

Figure: “... least-squares and linear programming problems have a
fairly complete theory, arise in a variety of applications, and can be
solved numerically very efficiently ... the same can be said for the
larger class of convex optimization problems.” — from textbook

Note that although I drew it this way for clearer visualization,
convex optimization problems are much more than just two
families. We’ll see their names later.

Mathematical Optimization Problem 36

Considering the following mathematical optimization problem
(a.k.a optimization problem):

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, 2, . . .m

I x = (x1, . . . , xn) ∈ Rn is the optimization variable

I f0 : Rn → R is the objective function

I fi : Rn → R (i = 1, 2, . . . ,m) are the constraint functions

A vector x∗ is called optimal, or called a solution of the
problem, iff: ∀z satisfying every fi(z) ≤ bi (i = 1, 2, . . . ,m), we
have f0(z) ≥ f0(x∗).

Least-Squares Problems (Linear ver.) 37

minimize f0(x) = ‖Ax− b‖22 =

k∑
i=1

(aTi x− bi)2

It has no constraints. x ∈ Rn, A ∈ Rk×n, k ≥ n. ai ∈ Rn are the
rows of the coefficient matrix A.
The solution can be reduced to solving a set of linear equations:

ATAx = AT b

We have analytical solution:

x = (ATA)−1AT b

Can be solved in approximately O(n2k) time if A is dense,
otherwise much faster.

Least-Square Problems’ Solution 38

Figure: Illustration of how we get the solution of a least-square
problem. k = 3, n = 1. With Col(A) be the set of all vectors of the
form Ax (the column space, consistent), the closest vector of the form
Ax to b is the orthogonal projection of b onto Col(A). Figure from
https://textbooks.math.gatech.edu/ila/least-squares.html.

https://textbooks.math.gatech.edu/ila/least-squares.html

Linear Programming Problems 39

minimize f0(x) = cTx

subject to fi(x) = aTi x ≤ bi, i = 1, 2, . . .m

It is called linear programming, because the objective
(parameterized by c ∈ Rn) and all constraint functions
(parameterized by ai ∈ Rn and bi ∈ R) are linear.

I No simple analytical solution.

I Cannot give exact number of arithmetic operations
required.

I A lot of effective methods, include:
I Dantzig’s simplex method 3

I Interior-point methods (most recent)
I Time complexity can be estimated to a given accuracy,

usually around O(n2m) in practice (assuming m ≥ n).
I Could be extended to convex optimization problems.

3It’s the thing you’ve be taught in junior high school.

https://people.richland.edu/james/ictcm/2006/simplex.html

Linear Programming Problems 40

Many optimization problems can be transformed to an
equivalent linear program. For example, the Chebyshev
approximation problem:

minimize max
i=1,2,...k

|aTi x− bi|

It can be solved by solving:

minimize t

subject to aTi x− t ≤ bi, i = 1, 2, . . . , k

− aTi x− t ≤ bi, i = 1, 2, . . . , k

Here, ai, x ∈ Rn, bi, t ∈ R.

Linear Programming Problems 40

Many optimization problems can be transformed to an
equivalent linear program. For example, the Chebyshev
approximation problem:

minimize max
i=1,2,...k

|aTi x− bi|

It can be solved by solving:

minimize t

subject to aTi x− t ≤ bi, i = 1, 2, . . . , k

− aTi x− t ≤ bi, i = 1, 2, . . . , k

Here, ai, x ∈ Rn, bi, t ∈ R.

Convex Optimization Problems 41

A convex optimization problem is one of the form

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, 2, . . .m

where the functions f0, f1, . . . , fm : Rn → Rm are all convex
functions. That is, they satisfy:

fi(θx+ (1− θ)y) � θfi(x) + (1− θ)fi(y)

∀x, y ∈ Rn, θ ∈ [0, 1].

The least-squares problem and linear programming problem are
both special cases of the general convex optimization problem.

Convex Optimization Problems Solution 42

I No analytical formula for the solution.

I Interior-point methods work very well in practice, but no
consensus has emerged yet as to what the best method or
methods are, and it is still a very active research area.

I We cannot yet claim that solving general convex
optimization problems is a mature technology.

I For some subclasses of convex optimization problems, e.g.
second-order cone programming or geometric programming,
interior-point methods are approaching mature technology.

Nonlinear Optimization 43

(Mathematical) Optimization Problems

Convex Optimization Problems

Linear Programming
Problems

Least-Squares
Problems

Figure: Illustration of what are included in the nonlinear optimization
problems (grey parts are wiped out). The problems where (1) ∃fi not
linear, (2) the problem is not known to be convex.

Nonlinear Optimization Study I 44

No effective methods for solving the general nonlinear
programming problem, and the different approaches each of
involves some compromise.

I Local optimization: “more art than technology”

I Global optimization: “the compromise is efficiency”

Convex optimization also helps with non-convex problems from:

I Initialization for local optimization:

1. Find an approximate, but convex, formulation of the
problem.

2. Use the approximate convex problem’s exact solution to
handle the original non-convex problem.

Nonlinear Optimization Study II 45

I Introduce convex heuristics for solving nonconvex
optimization problems, e.g:
I Sparsity: when and why it is preferred.
I The use of randomized algorithms to find the best

parameters.

I Estimating the bounds, e.g. estimating the lower bound on
the optimal value (the best-possible value):
I Lagrangian relaxation:

1. Solve the Lagrangian dual problem, which is convex

2. It provides a lower bound on the optimal value

I Relaxation:
I Each nonconvex constraint is replaced with a looser, but

convex, constraint.

Convex Optimization

6

The Standard Form 47

The problem is often expressed as:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, 2, . . . ,m

hi(x) = 0, i = 1, 2, . . . , p

The domain D is defined as:

D =

m⋂
i=0

dom fi ∩
p⋂
i=1

domhi

A point x ∈ D is feasible if it satisfies the constraints (fi for
i = 1, . . . ,m, and hi for i = 1, . . . , p).
The optimal value p∗ is inf f0(x) when x is feasible. An optimal
point x∗ satisfies f0(x

∗) = p∗.

The Standard Form Convex Optimization Problem 48

The standard form optimization problem is convex optimization
problem when satisfying three additional conditions:

1. The objective function f0 must be convex;

2. The inequality constraint functions fi (i = 1, 2, . . . ,m)
must be convex;

3. The equality constraint functions hi(x) = aTi x− bi
(i = 1, 2, . . . , p) must be affine.

An important property coming after: The feasible set D must
be convex, as it is the intersection of the above-listed convex
functions.

The Epigraph Form 49

The epigraph form is in the form (x ∈ Rn, t ∈ R), obviously
equivalent with standard form:

minimize t

subject to f0(x)− t ≤ 0

fi(x) ≤ 0, i = 1, 2, . . . ,m

hi(x) = 0, i = 1, 2, . . . , p

Note that the objective function of the epigraph form problem
is a linear function of the variables x, t.
It can be interpreted geometrically as minimizing t over the
epigraph of f0, subject to the constraints on x.

Local and Global Optima 50

A fundamental property of convex optimization problems is
that any locally optimal point is also (globally) optimal.

Proof: Assume x is local optima, then x ∈ D, and for some
R > 0,

f0(x) = inf{f0(z) | z ∈ D, ‖z − x‖2 ≤ R}

Now assume it is not global optima, then ∃y ∈ D, f0(y) < f0(x).
There must be ‖y − x‖2 > R. Consider point z given by:

z = (1− θ)x+ θy θ =
R

2‖y − x‖2
<

1

2

Therefore, ‖z − x‖2 = R
2 < R. By convexity of feasible set D,

z ∈ D, and f0 is convex. Then it contradicts the assumption:

f0(z) ≤ (1− θ)f0(x) + θf0(y) < f0(x)

Solving Convex Optimization Problems 51

When solving an optimization problem, we follow the following
steps:

1. Reformulate the problem into the standard format /
epigraph format / other known equivalent format (e.g. LP
(Linear Program), QP (Quadratic Program), SOCP
(Second-Order Cone Program), GP (Geometric Program),
CP (Cone Program), SDP (Semidefinite Program)); 4

2. We could form highly nontrivial bounds on convex
optimization problems by duality. (Weak) duality works
even for hard problems that are not necessarily convex (but
the functions involved must be convex).

3. The problem could be solved by solving the KKT
(Karush-Kuhn-Tucker) conditions.

4 Textbook Chapter 4.

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

Special Cases 52

When f0 is a constant, the problem becomes a feasibility
problem.

When there’s no f1, . . . , fm and no h1, . . . hp, the problem is an
unconstrained minimization problem.

I Feasibility → unconstrained minimization: make a new f ′0
with value 0 (or other constants) when x ∈ D, otherwise
f ′0(x) = +∞.

I Unconstrained minimization → feasibility : introduce
f0(x) ≤ p∗ + ε as the constraint and remove the objective.

Infeasible problem: p∗ = +∞; unbounded problem: p∗ = −∞.

Example: Converting LPs to standard form 53

LPs are normally in the form:

minimize cTx+ d

subject to Gx � h
Ax = b

With slack variable s ∈ Rm � 0 introduced and x = x+ − x−,
x+, x− � 0:

minimize cTx+ − cTx− + d

subject to Gx+ −Gx− + s = h

Ax+ −Ax− = b

s, x+, x− � 0

Example: Converting a problem into LP I 54

Consider the Chebyshev center of a polyhedron P, defined as:

P = {x ∈ Rn | aTi x ≤ bi, i = 1, 2, . . .m}

We want to find the largest Euclidean ball that lies in P, whose
center is known as the Chebyshev center of the polyhedron.
The ball is represented as:

B = {xc + u | ‖u‖2 ≤ r}

The variables: xc ∈ Rn, r ∈ R, problem: maximize r subject to
the constraint B ⊆ P.

Example: Converting a problem into LP II 55

We start from observing that x = xc + u from B, and that
x ∈ P, thus:

aTi (xc + u) = aTi xc + aTi u ≤ bi
‖u‖2 ≤ r infers that:

sup{aTi u | ‖u‖2 ≤ r} = r‖ai‖2

and that the condition we have is:

aTi xc + r‖ai‖2 ≤ bi

a linear inequality in (xc, r).

minimize − r
subject to aTi xc + r‖ai‖2 ≤ bi, i = 1, 2, . . .m

Lagrangian Duality 56

Consider the standard form written as:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, 2, . . . ,m

hi(x) = 0, i = 1, 2, . . . , p

Denote the optimal value as p∗. Its Lagrangian,
L : Rn × Rm × Rp → R, with domL = D × Rm × Rp:

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

It is basically a weighted sum of the objective and the
constraints. The Lagrange dual function g : Rm × Rp → R:

g(λ, ν) = inf
x∈D

L(x, λ, ν)

Lagrangian Duality Properties 57

Denote g’s optimal point, or dual optimal point, as (λ∗, ν∗).

g is always concave, and could reach −∞ at some λ, ν values.

There’s an important lower-bound property: If λ � 0, then
g(λ, ν) ≤ p∗.

Proof: Since x∗ ∈ D, fi(x
∗) ≤ 0, hi(x

∗) = 0, thus:

p∗ = f0(x
∗) ≥ L(x∗, λ∗, ν∗) ≥ inf

x∈D
L(x, λ∗, ν∗) = g(λ∗, ν∗)

KKT: Proof of Complementary Slackness 58

Assume strong duality holds, then:

f0(x
∗) = g(λ∗, ν∗)

= inf
x∈D

(
f0(x) +

m∑
i=1

λ∗i fi(x) +

p∑
i=1

ν∗i hi(x)
)

≤ f0(x∗) +

m∑
i=1

λ∗i fi(x
∗) +

p∑
i=1

ν∗i hi(x
∗)

≤ f0(x∗)

because of λi ≥ 0, fi(x
∗) ≤ 0, hi(x

∗) = 0. Therefore,

m∑
i=1

λ∗i fi(x
∗)

Since each term is non-positive, λ∗i fi(x
∗) = 0.

KKT (Karush-Kuhn-Tucker) optimality conditions 59

For a problem with differentiable fi and hi, we have four
conditions that togetherly named KKT conditions:

I Primal Constraints:{
fi(x) ≤ 0 i = 1, 2, . . . ,m

hi(x) = 0 i = 1, 2, . . . , p

I Dual Constraints: λ � 0

I Complementary Slackness: λifi(x) = 0 (i = 1, 2, . . . ,m)

I gradient of Lagrangian vanishes (with respect to x):

∇xL(x, λ, ν) = ∇xf0(x)+

m∑
i=1

λi∇xfi(x)+

p∑
i=1

νi∇xhi(x) = 0

KKT Properties 60

I If strong duality holds and (x, λ, ν) are optimal, then KKT
condition must be satisfied.

I If the KKT condition is satisfied by (x, λ, ν), strong duality
must hold and the variables are optimal.

I If Slater’s Conditions (see textbook section 3.5.6, these
conditions imply strong duality) is satisfied, and x is
optimal ⇐⇒ ∃(λ, ν) that satisfy KKT conditions.

Least Square and Least Norm 61

The original form of least-square problem:

minimize ‖Ax− b‖22

With regularization (µ > 0):

minimize ‖Ax− b‖22 + µ‖x‖22

the solution becomes: xµ = (ATA+ µI)−1AT b
A corresponding least-norm problem’s solution is xln:

minimize ‖x‖22
subject to Ax = b

A fact: xln = limµ→0 xµ (ref: Prof. Boyd’s slides 5)

5
https://see.stanford.edu/materials/lsoeldsee263/08-min-norm.pdf

https://see.stanford.edu/materials/lsoeldsee263/08-min-norm.pdf

Least-Norm problem equivalent form 62

Previously we have the least-norm problem in the form:

minimize ‖x‖22
subject to Ax = b

But it is equivalent to the form:

minimize xTx

subject to Ax = b

Easily proved by showing that when Ax = b, A(x− x∗) = 0,
x∗ = AT (AAT)−1b makes (x− x∗)Tx∗ = 0, and apply
Pythagorean theorem, we have ‖x‖2 > ‖x∗‖2.

Pseudo Inverse 63

With independent rows, we have that AAT is nonsingular, and
thus:

A† = AT (AAT)−1

With independent columns, we have that ATA is nonsingular,
and thus:

A† = (ATA)−1AT

Recall that previously, we said that for a least-square problem,
‖Ax− b‖22, sometimes it doesn’t exist an A−1, thus we use
ATAx = AT b instead, the pseudo inverse is a formal definition
of this operation.

Example: Solving Least-norm I 64

Consider the following problem with x ∈ Rn, A ∈ Rp×n, b ∈ Rp:

minimize xTx

subject to Ax = b

Solution: The Lagrangian of this problem is (no need λ):

L(x, ν) = xTx+ νT (Ax− b)

The KKT conditions are:

I Primal Constraints: Ax = b

I Dual Constraints: None

I Complementary Slackness: None

I gradient of Lagrangian vanishes (with respect to x):

∇xL(x, ν) = 2x+AT ν = 0

Example: Solving Least-norm I 64

Consider the following problem with x ∈ Rn, A ∈ Rp×n, b ∈ Rp:

minimize xTx

subject to Ax = b

Solution: The Lagrangian of this problem is (no need λ):

L(x, ν) = xTx+ νT (Ax− b)

The KKT conditions are:

I Primal Constraints: Ax = b

I Dual Constraints: None

I Complementary Slackness: None

I gradient of Lagrangian vanishes (with respect to x):

∇xL(x, ν) = 2x+AT ν = 0

Example: Solving Least-norm II 65

From gradient of Lagrangian vanishes, x∗ = −(1/2)AT ν∗;
from Primal Constraints, Ax∗ = b. Therefore:

AAT ν∗ = −2b

ν∗ = −2(AAT)−1b

x∗ = AT (AAT)−1b = A†b

It is equivalent with the least-square solution we previously
have in terms of pseudo-inverse:

x∗ = (ATA)−1AT b = A†b

Categories of Learning Algorithms 66

I Descent Methods
I To find the best step size we do line search, but the

particular choice of line search does not matter such much,
instead, the particular choice of search direction matters a
lot.

I SGD, AdaGrad, Adam, etc. Almost all popular optimizers
today.

I Newton’s Method
I In theory faster convergence, in practice much larger space.
I (*) Prof. Lin’s course projects (Newton + CNN)

I Interior-point Methods
I Applying Newton’s method to a sequence of modified

versions of the KKT conditions.

https://www.csie.ntu.edu.tw/~cjlin/courses/optdl2019/

Descent Methods 67

x(k+1) = x(k) + η∆x(k) f(x(k+1)) < f(x(k))

where ∆x(k) is called a step, and |η| = −η the step size. From
convexity, it implies:

∇f(x)T∆x < 0

Step size could be determined by line-search, optimized along
the direction of ∇f(x)∆x.

f(x+ η∆x) ≈ f(x) + η∇f(x)T∆x

Line Search 68

Exact line search:

η∗ = argmin
η>0

f(x+ η∆x)

Backtracking line search:

I Parameters: α ∈ (0, 0.5), β ∈ (0, 1)

I Start with η = 1, repeat:

1. Stop when:

f(x+ η∆x) < f(x) + αη∇f(x)T ∆x

2. If not stop, update η := βη.

Both strategies are used for selecting a proper step size. Not
very important in practice.

Illustration of Previous Example’s Central Path 69

Backtrack
Line-Search

△x

Exact Line-Search

f(x)

x

Figure: Illustration of two types of line search.

Steepest Descent Methods 70

In steepest descent methods, instead of optimizing towards the
direction of ∇f(x)T∆x, it searches for the unit-vector v with
the most negative ∇f(x)T v — the directional derivative of f at
x in the direction v. In other words:

x(k+1) = x(k) + η∆x
(t)
nsd

where xnsd is defined as:

∆xnsd = argmin
v
{∇f(x)T v | ‖v‖ = 1}

Subgradient Methods 6
71

Use subgradient g ∈ ∂f(x) instead of gradient ∇f(x), which
means that,

f(y) ≥ f(x) + gT (y − x), ∀y

There could be multiple g for the same x. The advantage of
using g is that it enables the function to handle non-derivative
functions.

g for x(t) is denoted as g(t).

x(k+1) = x(k) + ηg(t)

6In Prof. Gu’s Slides only, not included in textbook.

Newton’s Method 72

Giving starting point x ∈ dom f and tolerance ε > 0, repeat
the following steps:

1. Compute Newton step: ∆xnt = − ∇f(x)∇2f(x)

2. Compute Newton decrement:
λ(x)2 = (∇f(x)T∇2f(x)−1∇f(x))

3. Quit if λ(x)2

2 ≤ ε
4. Select step size η by backtracking line-search

5. x = x+ η∆xnt

Newton’s Method Interpretations 73

I x+ ∆xnt minimized second-order approximation:

f̂(x+ v) = f(x) +∇f(x)T v +
1

2
vT∇2f(x)

I x+ ∆xnt solves linearized optimality condition:

∇f(x+ v) ≈ ∇f̂(x+ v) = ∇f(x) +∇2f(x)v = 0

I ∆xnt is steepest descent direction at x in local Hessian
norm:

‖u‖∇2f(x) =
(
uT∇2f(x)u

)1/2
I λ(x) is an approximation of f(x)− p∗, with p∗ estimated

by infy f̂(y):

f(x)− inf
y
f̂(y) =

1

2
λ(x)2

Logarithm Barrier Function 74

Define the logarithm barrier function:

φ(x) = −
m∑
i=1

log(−fi(x)), domφ = {x | fi(x) < 0, i = 1, . . .m}

it preserves the convexity and the twice continuously
differentiable (if any) of fi, and could turn the inequality
constraints from explicit to implicit:

minimize f0(x) + φ(x)

subject to hi(x) = 0, i = 1, 2, . . . , p

Logarithm Barrier Function’s Properties 75

φ(x) = −
m∑
i=1

log(−fi(x)), domφ = ∩mi=1 dom fi

The function φ(x) is convex when all fi(x) are convex, and
twice continuous differentiable when fi are all twice continuous
differentiable.

∇φ(x) =

m∑
i=1

1

−fi(x)
∇fi(x)

∇2φ(x) =

m∑
i=1

1

fi(x)2
∇fi(x)∇fi(x)T +

m∑
i=1

1

−fi(x)
∇2fi(x)

Interior-Point Method 76

The interior point method’s conditions’ only difference with
KKT conditions is, replacing complementary slackness with
approximate complementary slackness:

−λifi(x) =
1

t
i = 1, 2, . . . ,m

Interior point methods does not work well if some of the
constraints are not strictly feasible:

I fi is convex and twice continuously differentiable

I A ∈ Rp×n and A’s rank is p

I p∗ is finite and attained

I The problem is strictly feasible (exists interior point),
hence, strong duality holds and dual optimum is attained.

Interior-Point Method 77

It is the algorithm coming directly from primal-dual methods.
In brief, at iteration step t, we set x∗(t) as the solution of:

minimize tf0(x) + φ(x)

subject to Ax = b

t exists here as a balance of φ(x)’s increasing value, forcing the
algorithm to focus on f0 more in the end, approximation
improves as t→∞.

We have central path defined as {x∗(t) | t > 0}, the path alone
which we minimizes the Lagrangian, and:

lim
t→∞

f0(x
∗(t)) = p∗

Central Path I 78

Central path is formed by the solutions of:

minimize tf0(x) + φ(x)

subject to Ax = b

The necessary and sufficient conditions of points on the central
path (a.k.a central points): strictly feasible.

Ax∗(t) = b, fi(x
∗(t)) < 0 (i = 1, 2, . . . ,m)

Applying the Lagrangian-gradient vanishing-condition (No. 4),
we have that, for A ∈ Rp×n, ∃ν̂ ∈ Rp, s.t.:

t∇f0(x∗(t)) +∇φ(x∗(t)) +AT ν̂ = 0

Central Path II 79

Expanding ∇φ, we have:

t∇f0(x∗(t)) +

m∑
i=1

1

−fi(x∗(t))
∇fi(x∗(t)) +AT ν̂ = 0

According to the previous properties of x∗(t), we derive an
important property: Every central point yields a dual feasible
point, and hence a lower bound on the optimal value p∗.

λ∗i (t) = − 1

tfi(x∗(t))
, i = 1, 2, . . . ,m ν∗(t) =

ν̂

t

are considered the dual feasible pair for the original problem
with f0(x), inequality constraints, and no barrier function.

Central Path III 80

In particular, we have the estimated value p∗ which is the
optimal value of the dual function g:

p∗ = g
(
λ∗(t), ν∗(t)

)
= f0(x

∗(t)) +

m∑
i=1

λ∗i (t)fi(x
∗(t)) + ν∗(t)

(
Ax∗(t)− b

)
= f0(x

∗(t))−
m∑
i=1

1

t
+
ν̂

t
∗ 0

= f0(x
∗(t))− m

t

Therefore, central point x∗(t) is no more than m
t sub-optimal:

f0(x
∗(t))− p∗ ≤ m

t

Interior-Point Method Example I 81

Considering the inequality form linear programming:

minimize cTx

subject to Ax � b

Then we have the barrier function:

φ(x) = −
m∑
i=1

log(bi − aTi x), domφ = {x | Ax ≺ b}

where aTi are the rows of A.

Interior-Point Method Example II 82

∇φ(x) =

m∑
i=1

1

−fi(x)
∇fi(x)

=

m∑
i=1

ai

bi − aTi x

∇2φ(x) =
m∑
i=1

1

fi(x)2
∇fi(x)∇fi(x)T +

m∑
i=1

1

−fi(x)
∇2fi(x)

=
m∑
i=1

aia
T
i

(bi − aTi x)2

If we define d ∈ Rm s.t. di = 1
bi−aTi x

, we have: ∇φ(x) = ATd

and ∇2φ(x) = AT diag(d)2A.

Interior-Point Method Example III 83

There’s no equality constraints in this case so there’s no ν.
Recall that previously we have (A corresponds to equality
constraint here):

t∇f0(x∗(t)) +

m∑
i=1

1

−fi(x∗(t))
∇fi(x∗(t)) +AT ν̂ = 0

In this situation:

tc+

m∑
i=1

1

bi − aTi x∗(t)
ai = tc+ATd = 0

Points on central path, x∗(t), must be parallel to −c, ∇φ(x∗(t))
is normal to the level set of φ through x∗(t).

Illustration of Previous Example’s Central Path 84

Figure: n = 2,m = 6. The dashed curves show three contour lines of
the logarithmic barrier function, at different level of φ(x∗(t)) value.

The Lipschitz Constraint 85

Lipschitz constraint is a very common type of constraint
applied to the functions, being L-Lipschitz meaning:

|f(x)− f(y)| ≤ L‖x− y‖, ∀x, y ∈ dom f

L is called the coefficient.

Lipschitzness is very important in analyzing convergence of
optimization problems, in both convex cases and non-convex
cases.

We need it to analyze from one step to the next, although
sometimes it is omitted in the end.

The Lipschitz: Interpretation 86

The coefficient L of f can be interpreted as:

I A bound on the next-level derivative of f
I Can taken to be zero if f is constant.

I More generally, L measures how well f can be
approximated by a constant.
I If f = ∇g then L measures how well g can be approximated

by a linear model.
I If f = ∇2h then L measures how well h can be

approximated by a quadratic model.

Example pf Lipschitz: Convergence Analysis 87

Consider the convergence analysis of Newton, in unbounded
optimization, where the objective f is:

I Twice continuously differentiable: ∇f(x) and ∇2f(x) exist;

I Strongly convex with constant m: ∇2f(x) � mI (x ∈ D)
I It implies that ∃M > 0, ∀x ∈ D, ∇2f(x) �MI. (Proof on

next page)

I The Hessian of f is L-Lipschitz continuous on D, ∀x, y ∈ D:

‖∇2f(x)−∇2f(y)‖2 ≤ L‖x− y‖2

Proof of Strong-Convexity Upper Bound I 88

This part’s proof comes from textbook 9.1.2.

First, by using the 1st-order characterization of convex function
f , we have that, ∀x, y ∈ dom f :

f(y) ≥ f(x) +∇f(x)T (y − x)

with the previously-mentioned quadratic Taylor approximation:

f(y) ≈ f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(x)(y − x)

In the case of strong convex with constant m > 0, we have
∇2f(x) � mI, thus

(y − x)T∇2f(z)(y − x) ≥ m‖y − x‖22

Proof of Strong-Convexity Upper Bound II 89

Therefore we have:

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖y − x‖22

This inequality implies that the sublevel sets contained in
dom f are bounded, so dom f is bounded. It essentially means
that the maximum eigenvalue of ∇2f(x), which is a continuous
function of x on dom f , is bounded above on dom f , i.e., there
exists a constant M > 0 such that:

∇2f(x) �MI

Note that m are M are often unknown in practice.

f(y) ≤ f(x) +∇f(x)T (y − x) +
M

2
‖y − x‖22

Strong-Convexity Error Bounds Implications I 90

Still from textbook 9.1.2.

Previously we have had:

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖y − x‖22

Now, considering a fixed x, it is obvious that the right-hand-side
is a convex quadratic function of y. Where we find the ỹ that
minimizes it is the one that achieves zero derivative:

∇ỹ
(
f(x)+∇f(x)T (ỹ−x)+

m

2
‖ỹ−x‖22

)
= ∇f(x)+m(ỹ−x) = 0

ỹ = x− 1

m
∇f(x)

Strong-Convexity Error Bounds Implications II 91

And therefore,

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖y − x‖22

≥ f(x) +∇f(x)T (ỹ − x) +
m

2
‖ỹ − x‖22

= f(x)− 1

m
∇f(x)T∇f(x) +

1

2m
‖∇f(x)‖22

= f(x)− 1

2m
‖∇f(x)‖22

Since it holds for ∀y ∈ D, we can say that:

p∗ ≥ f(x)− 1

2m
‖∇f(x)‖22

Strong-Convexity Error Bounds Implications III 92

It is often used as the upper-bound estimation of error:

ε = f(x)− p∗ ≤ 1

2m
‖∇f(x)‖22

Similarly, applying the same strategy to:

f(y) ≤ f(x) +∇f(x)T (y − x) +
M

2
‖y − x‖22

we have an lower bound of the error ε:

p∗ ≤ f(x)− 1

2M
‖∇f(x)‖22

ε = f(x)− p∗ ≥ 1

2M
‖∇f(x)‖22

Idea of the Newton Convergence Analysis 93

The general idea: The process of learning by (Damped)
Newton method could be divided into two phases; once we enter
the second phase, we never leave there.

(*) If you’ve taken Prof. Gu’s CS260 you’ll see how
commonly-used this approach of division is. . . in terms of
convergence analysis.

Example pf Lipschitz: Convergence Analysis I 94

Outline of the proof: ∃η ∈ (0, m
2

L], γ > 0, such that{
f(x(k+1))− f(x(k)) ≤ −γ ‖∇f(x)‖2 ≥ η
L

2m2 ‖∇f(x(k+1))‖2 ≤
(

L
2m2 ‖∇f(x(k))‖2

)2 ‖∇f(x)‖2 < η

There are two phases of the problem (t(k) is the step size here):

1. Damped Newton phase (‖∇f(x)‖2 ≥ η):
I Most iterations require backtracking steps
I Function value decreases by at least γ
I If bounded (p∗ > −∞), this phase costs iterations no more

than
f(x(0))− p∗

γ

2. Quadratically convergent phase (‖∇f(x)‖2 < η):
I All iterations use step size t(k) = 1

Example pf Lipschitz: Convergence Analysis II 95

I ‖∇f(x)‖2 converges to zero quadratically:

L

2m2
‖∇f(x(k+1))‖2 ≤

(L

2m2
‖∇f(x(k))‖2

)2 ≤ 1

2

We’ve set η ≤ L2

m , thus for k + 1 and ‖∇f(x(k))‖2 < η, we have:

‖∇f(x(k+1))‖2 ≤
L

2m2
‖∇f(x(k))‖22 <

η2L

2m2
≤ η

2
< η

and it holds for ∀l > k. More generally:

L

2m2
‖∇f(x(l))‖2 ≤

(L

2m2
‖∇f(x(k))‖2

)2l−k

≤
(1

2

)2l−k

‖∇f(x(l))‖22 ≤
4m4

L2

(1

2

)2l−k+1

Example pf Lipschitz: Convergence Analysis III 96

From strong convexity we know:

f(x)− p∗ ≤ 1

2m
‖∇f(x)‖22

f(x(l))− p∗ ≤ 1

2m
‖∇f(x(l))‖22 ≤

2m3

L2

(1

2

)2l−k+1

≤ ε

It implies that it converges fast at this phase.

Define ε0 = 2m3

L2 , then we have that, We can bound the number
of iterations in the quadratically convergent phase by:

log2 log2

(ε0
ε

)

Example of Lipschitz: Sub-gradient Analysis 97

Consider a function f which is ρ-Lipschitz, updated via
sub-gradient descent.

Something we need to prove in advance to make the conclusion
obvious:

∵ f(x(t+1))− f(x∗) ≥ 0

f(x(t+1))− f(x(t)) ≤ 0

∴ 〈x(t+1) − x(t), g(t+1)〉 ≤ 0 ≤ 〈x(t+1) − x∗, g(t+1)〉
⇐⇒ 〈x(t+1) − x∗, x(t+1) − x(t)〉 ≤ 0

∴ ‖x(t) − x(t+1)‖2 ≤ ‖x(t) − x∗‖2 − ‖x(t+1) − x∗‖2

I have a figure to illustrate this relation on the next page.

Proof of the ‖·‖2 Inequation 98

x* x(t)

x(t+1)

Figure: Illustration of why we conclude
‖x(t) − x(t+1)‖2 ≤ ‖x(t) − x∗‖2 − ‖x(t+1) − x∗‖2 from
〈x(t+1) − x∗, x(t+1) − x(t)〉 ≤ 0 .

Example of Lipschitz: Sub-gradient Analysis I 99

(∵ (x(t) − x(k))g(t) ≤ f(x(t))− f(x(k)))

f(x(t))− f(x∗) ≤
T∑
t=1

(
f(x(t))− f(x(t+1))

)
≤

T∑
t=1

(x(t) − x(t+1))T g(t) (∵ a2 + b2 ≥ 2ab)

≤
T∑
t=1

(‖x(t) − x(t+1)‖2

2η
+
η

2
‖g(t)‖2

)
≤

T∑
t=1

‖x(t) − x∗‖2 − ‖x(t+1) − x∗‖2

2η
+

T∑
t=1

η

2
‖g(t)‖2

=
‖x(0) − x∗‖2 − ‖x(T+1) − x∗‖2

2η
+
η

2

T∑
t=1

‖g(t)‖2

Example of Lipschitz: Sub-gradient Analysis II 100

Assume that f is ρ-Lipschitz, then we have ‖g(t)‖ ≤ ρ (∀t).
Also, x(0) = 0, limt→∞ x

(t) → x∗.

f(x(t))− f(x∗) ≤‖x
(0) − x∗‖2 − ‖x(T+1) − x∗‖2

2η
+
η

2

T∑
t=1

‖g(t)‖2

1

T

(
f(x(t))− f(x∗)

)
≤‖x

∗‖2

2ηT
+
ηρ2

2

For every x∗, if T ≥ ‖x
∗‖2ρ2
ε2

and η =
√
‖x∗‖2
ρ2T

, then the right

hand side of the last inequation is at most ε.

Examples

6

Accelerated Methods for Non-Convex Optimization 102

Accelerated Methods for Non-Convex Optimization

I Design accelerated methods that doesn’t rely on convexity
of the optimization problem.

I It relies on that the problem has L1-Lipschitz continuous
gradient and L2-Lipschitz continuous Hessian.

I Calculate a score α according to L1, ε, and the gradient
∇f(x) to decide whether or not negative curvature descent
should be conducted at each step.

I Apply accelerated gradient descent for almost-convex
function made for the almost-convex point at each step to
update that point.

https://arxiv.org/abs/1611.00756

Gradient descent with One-Step Escaping (GOSE) 103

Saving gradient and negative curvature computations:
Finding local minima more efficiently

I Doesn’t require the original problem to be convex.

I Develops an algorithm with fewer steps of computing the
negative curvature descent 7.

I Divide the entire domain of the objective function into two
regions (by comparing ‖∇f(x)‖2 with ε): large gradient
region, small gradient region; and then perform gradient
descent-based methods in the large gradient region, and
only perform negative curvature descent in the small
gradient region.

Official code in PyTorch:
https://github.com/yaodongyu/gose-nonconvex.

7Useful for escaping the small-gradient regions.

https://arxiv.org/abs/1712.03950
https://arxiv.org/abs/1712.03950
https://github.com/yaodongyu/gose-nonconvex

MTL as Multi-Objective Optimization 104

Multi-Task Learning as Multi-Objective Optimization work on
solving the problem of that multiple tasks might conflict.

I Use the multiple-gradient-descent algorithm (MGDA)
optimizer;

I Define the Pareto optimality for MTL (in brief, no other
solutions dominants the current solution);

I Use multi-objective
KKT (Karush-Kuhn-Tucker) conditions and find a descent
direction that decreases all objectives.

I Applicable to any problem that uses optimization based
on gradient descent.

Implementation: https://github.com/hav4ik/Hydra

https://papers.nips.cc/paper/7334-multi-task-learning-as-multi-objective-optimization.pdf
https://hal.inria.fr/inria-00389811v2/document
http://www.seas.ucla.edu/~vandenbe/ee236b/lectures/duality.pdf
https://github.com/hav4ik/Hydra

	Outline
	Introduction: Convex Optimization
	Convexity
	Convex Functions' Properties
	Definition of Convex Optimization

	Convex Optimization
	General Strategy
	Learning Algorithms
	Convergence Analysis

	Examples

