Diffusion Language Model

Zhiping (Patricia) Xiao
UCLA SCAI Lab Course Reading Group Fall 2022

Outline
—

Introduction
References
Background

Diffusion-LM
Motivation
Background
Architecture
Noise Schedule
Training Objective
Denoiser
From Continuous to Discrete
Controllable Text Generation
Highlighted Results

Introduction

=

Papers 4

Diffusion-LM Improves Controllable Text Generation
(NeurIPS’22)
» Build a Language Model eligible for fine-grained
controllable text generation, by applying diffusion model
on continuous latent space.

» Code: https://github.com/Xiangli1999/Diffusion-LM

Y

https://arxiv.org/abs/2205.14217
https://arxiv.org/abs/2205.14217
https://github.com/XiangLi1999/Diffusion-LM

Generative Models 5

—

GAN: Adversarial 54 Generator ,

. " X
training G(z)

VAE: maximize x Decoder X'

variational lower bound po(x|2)

Inverse ’

(=)

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse

Figure: Overview of different types of generative models.!

Hilianweng.github.io 2021 post on diffusion models W

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Language Models

Given a sequence of discrete words w = [wy, wa, ... wy)].

A language model py, (w) denotes the probability distribution
over sequences of words.

A language model assigns a probability
Pim(W) = P(w1, ..., wy,) to the whole sequence.

Generative Models for LMs 7
—

Controllable Text Generation is to compute p(w|c), aiming
at generate w that satisfies the control target c, where c is a
control variable (e.g. syntax tree, sentiment, topic, politeness,
to gender, persona).

Plug-and-Play Controllable Generation: aims to keep the
LM frozen and steer its output using potential functions (e.g.,
classifiers). In this setting:

» pim(W) pre-trained and frozen, encouraging fluent;

» For each task, train p(c|w) on small amount of data,
encourage w to fulfill the control.

» Posterior p(w|c) approximated from Bayes rule:

p(wle) o< p(c|w) - P (W)

Y

Quick Recap: Bayes Rule

p(ap) = ZEIAA) (BJL?;]; 4)

In this case, p(c) can be regarded as a unchanged.

Therefore:
p(wlc) o< p(c|w) - pim (W)

Diffusion-LM

=

Diffusion LM: Motivation 10
—

Focusing on a language models (LMs) offering controllable
generation for text without re-training.

Recent works succeed on controlling simple attributes e.g.,
sentiment, while little progress is made on complex, fine-grained
controls (e.g., syntactic structure).

Solution: a new non-autoregressive language model based on
continuous diffusions.

> continuous data domains: images, audio, etc. (enables
efficient gradient-based controllable generation)

» previous text diffusion models: on discrete state spaces,
defines a corruption process on discrete data (e.g., each
token has some probability to be corrupted to an absorbing

or random token). w

PPLM: the Closest Related Work to Diffusion LM 11
—

Plug and play language models: A simple approach to
controlled text generation (ICLR’20)

» It runs gradient ascent on an autoregressive LM’s hidden
activations make the following tokens satisfy the control
while maintaining fluency.

» Drawback 1: PPLM is based on autoregressive model, it
can only generate left-to-right, thus can never repair
previous errors.

» Drawback 2: Work well on simple attribute (e.g. topic)
control tasks, fail on more complex control tasks (e.g.
syntactic structure).

Y

https://arxiv.org/abs/1912.02164
https://arxiv.org/abs/1912.02164

Diffusion Models (DMs) 12

Recall that, the case of image:
Lpy =Egenn0,1)t [H€ — eg(z, 75)||§] .
The case of text: to maximize Exj~p,..u {log pg(Xo)}

View as modeling latent variables of the data xo € R™ (n is the
seq length, d is dimension of t) as a Markov chain

X7, ..., X0 € R™ where xr is a Gaussian.

The initial state pg(x7) = N (0,I), and noise to reduce at step ¢:

Po(xe—1]x¢) = N (x¢—1; po(x¢, 1), Bo(x¢, 1)),

where g and Yy may be computed by a U-Net or a
Tranformer. (Ablation Studies in Sec 7.4 and Appendix H)

Y

Diffusion Models (DMs) 13
To train pg(x—1|x¢) = N (x¢—1; po(Xe, 1), Xg(x¢,1)):
» Forward Process g: incrementally adds Gaussian noise to
data xg, until at diffusion step 7', samples x are
approximately Gaussian.

Q(Xt‘xt—l) = N(Xt; v1- 5tXt—1,5tI))

where f; is the amount of noise added at step t. ¢ is
pre-defined and contains no trainable parameter.

» Reverse Process py: reconstruct the data (i.e.
X7 — ...Xo), denoiser U-Net or Transformer.

» The diffusion model is trained to maximize the marginal
likelihood of the data

EXOdiata |:10gp6 (XO):|

Y

Diffusion LM: Measurement Criteria 14

—

Measurement of Im: Feed generated text to a teacher LM (i.e.,
a carefully fine-tuned GPT-2 model) and report the perplexity.
This metric is called lm-score (Im), a lower lm-score indicates
better sample quality.

Diffusion LM: Architecture 15
—

Gaussian Noise Gradually Denolaing Word Vectors Text
Diffusion-LM | 87 8_o 0f £ _LAh € X0 "
1nfusion- Starbucks is a
TR TR T T
X L4 L /L g
A : Gradien H s s
Q c:::izer Up:a!e‘ l J J
AN
Classifier Parse Tree = o ‘
R

Figure: Tteratively denoises a sequence of Gaussian vectors into word
vectors, yielding a intermediate latent variables of decreasing noise
level xp ...xo. For controllable generation: iteratively perform
gradient updates on these continuous latents to optimize for fluency
(parametrized by Diffusion-LM) and satisfy control requirements
(parametrized by a classifier).

Y

Diffusion LM: Architecture 16

Gaussian Noise Denoising Roundmg
pe(xt 1 | Xt 1)() w | Xo)

q(x¢ |Xt 1) (10 X0 \ w)

Noising Embedding

Figure: The forward and reverse diffusion processes. In addition to
the original diffusion models, Diffusion-LM add a Markov transition
between xo and w, defining embedding (w — x¢) and rounding

(xp = W).

Y

Diffusion LM: Non-Autoregressive 17

—

Autoregressive LMs: piy, (w)

n
plm(w) = plm(wl) lem(xi|$<i))
=2

where the next-token prediction py, (z;|z<;) is often
parametrized by Transformer architecture.

Claim: Most large pre-trained LMs are left-to-right
autoregressive. (e.g. GPT-3, PaLM)

» Fixed generation order (i.e., left to right) limits the
flexibility of models.

» For more: https://huggingface.co/transformers/v3.

1.0/model_summary.html

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2204.02311
https://huggingface.co/transformers/v3.1.0/model_summary.html
https://huggingface.co/transformers/v3.1.0/model_summary.html

Diffusion LM: Non-Autoregressive 18

—

Non-autoregressive LMs:

Claim: Most of the existing models in this category are
task-specific, such as machine translation and speech-to-text
(e.g. CTC and Imputer, NAT))

» It has been shown that these models fail for language
modeling in CoOMMA paper.

» A Study of Non-autoregressive Model for Sequence
Generation (ACL’20)

Claim: Diffusion-LM can condition on arbitrary classifiers,
which could utilize complex, global properties of the sentence.

Y

https://arxiv.org/abs/2004.07437
https://openreview.net/forum?id=B1l8BtlCb
https://aclanthology.org/2020.acl-main.15/
https://arxiv.org/abs/2004.10454
https://arxiv.org/abs/2004.10454

Why Diffusion LM uses Non-Autoregressive arch? 19

—

According to my personal opinion:
» Diffusion Models are often expensive.
» Many steps needed for training and generation.
» In this case, the denoiser — a U-Net or a Transformer.
» Non-autoregressive models generate a whole sequence at a
time.

Y

Diffusion LM: Diffusion Noise Schedule 20
—

The noise scheduler / variance schedule is an important
hyper-parameter to be determined.

» Elucidating the Design Space of Diffusion-Based
Generative Models (NeurIPS’22)

» The scheduler decide how much noise we add at each step.

https://huggingface.co/docs/diffusers/v0.3.0/en/api/schedulers
https://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2206.00364

Diffusion LM: Diffusion Noise Schedule 20
—

The noise scheduler / variance schedule is an important
hyper-parameter to be determined.

» Elucidating the Design Space of Diffusion-Based
Generative Models (NeurIPS’22)

» The scheduler decide how much noise we add at each step.

Problem: Standard noise schedules for continuous diffusion
models are not robust for text data.

https://huggingface.co/docs/diffusers/v0.3.0/en/api/schedulers
https://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2206.00364

Diffusion LM: Diffusion Noise Schedule 20
—

The noise scheduler / variance schedule is an important
hyper-parameter to be determined.

» Elucidating the Design Space of Diffusion-Based
Generative Models (NeurIPS’22)

» The scheduler decide how much noise we add at each step.

Problem: Standard noise schedules for continuous diffusion
models are not robust for text data.

Hypothesis: discrete nature of text involves rounding, making
the model insensitive to noise near t = 0.

Solution: introduce a new sgrt noise schedule suits for text

better.

https://huggingface.co/docs/diffusers/v0.3.0/en/api/schedulers
https://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2206.00364

Diffusion LM: Noise Schedule «, § Explained 21

Recall that during the forward process ¢ incrementally adds
Gaussian noise to data xq, until at diffusion step 7T, samples xp
are approximately Gaussian.

q(x¢|xt—1) = N (x5 1 — Bexi—1, Bed)

with B; to be scheduled, which is equivalent to:

Xt = V1= Bixs_1 4+ / Bre,

where € ~ N(0,). In practice, they find re-parametrization
helps with model training. By having a; = Hizo(l — Bs), we
have the closed-form expression of x; 1 = v/azxg + /1 — age.
We estimate x;_1 as:

xt—1 = Vg fo(xe,t) + V1 — age,

where fy(xy,t) estimates xq directly. w

i *: The Re-Parametrization

Proposed in Auto-Encoding Variational Bayes (ICLR’14)

» The combination of forward process ¢ and backward
process py can be seen as a variational auto-encoder
(VAE), hence the variational lower bound (i.e. ELBO) can
be used to minimize the negative log-likelihood with
respect to ground truth data sample xg.

22

https://arxiv.org/abs/1312.6114

i*: The Re-Parametrization

Proposed in Auto-Encoding Variational Bayes (ICLR’14)

» The combination of forward process ¢ and backward
process py can be seen as a variational auto-encoder
(VAE), hence the variational lower bound (i.e. ELBO) can
be used to minimize the negative log-likelihood with
respect to ground truth data sample xg.

» The ELBO in this case is the sum of losses at each step:
L=Ly+Li+---+Lp

22

https://arxiv.org/abs/1312.6114

i * : The Re-Parametrization 22

Proposed in Auto-Encoding Variational Bayes (ICLR’14)

» The combination of forward process ¢ and backward
process py can be seen as a variational auto-encoder
(VAE), hence the variational lower bound (i.e. ELBO) can
be used to minimize the negative log-likelihood with
respect to ground truth data sample xg.

» The ELBO in this case is the sum of losses at each step:
L=Ly+Li+---+Lp

» By the construction of ¢, we observe each L; (t =1,2,...T)
is the KL divergence between 2 Gaussian distributions.

lle = €o(xe,)I* = lle — co(Vaxo + v/ (1 — ar)e,)

Y

https://arxiv.org/abs/1312.6114

i * : The Re-Parametrization 23
Q(Xt|Xt—1) = N(Xt; v1—= Brxi—1, 5151)

Note that: sum of Gaussians is still Gaussian. As is shown by
Deep Unsupervised Learning using Nonequilibrium
Thermodynamics (ICML’15):

» It means that we do not have to apply ¢ repeatedly to
sample x; from x(. Instead we have:

q(x¢|x0) = N (x¢; Vaixo, (1 — a)I),

with oy =1 — f5; and @; = HZ:O Qs
» This then allows optimizing random terms of L; of a
randomly sampled ¢ during training.

» This re-param trick turns the model from a step-t mean
predictor to a total noise predictor.

> references: huggingface post, Lilian post. w

https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://huggingface.co/blog/annotated-diffusion
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Diffusion LM: SQRT Noise Schedule
—

For the noise schedule /1 — @, sqrt schedule defines @; as:

[t
a_t:]-_ T—I-S,

where s is a small constant that corresponds to the starting
noise level.

24

Diffusion LM: SQRT Noise Schedule 24
—

For the noise schedule /1 — @, sqrt schedule defines @; as:

[t
a_t:]-_ T—I-S,

where s is a small constant that corresponds to the starting
noise level.

» When t =0, a; = 1 — /s, the /1 — a7 is /s.

Other Noise (/Variance) Schedule 25

Ref: https://huggingface.co/blog/annotated-diffusion
» Linear Schedule

» Example: original DDPM, set the forward process variances
to constants increasing linearly from 5, = 1074 to
Br = 0.02.
> Denoising Diffusion Probabilistic Models (NeurIPS’20)
» Cosine Schedule

» The equation (usually divided by @p to normalize):

cos(L + 2
@ = (T x Lo
2 1+s

» Shown in Improved Denoising Diffusion Probabilistic
Models (ICML’21) that cosine schedule achieves better

results.

https://huggingface.co/blog/annotated-diffusion
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2102.09672

Diffusion LM: Noise Schedule

26
1.0
0.8
©
2os
(O]
)
Q04
= —— linear
02 —— cosine
— sqrt
0.0

0 250 500 750 1000 1250 1500 1750 2000

Diffusion Steps

Figure: Noise Schedule. Visualizing the noise schedule /1 — ag.

Figure 5 in the paper.

Diffusion LM: Noise Schedule 27
—

parametrize to predict xq parametrize to predict €
m sqrt Em sqrt
8 mmm cosine EEm cosine
B linear B linear
6
4

2 il III III
O 16 64 128 16 64 128

Figure: Noise Schedule, lm score. sqrt is the best. Figure 6 Row 2 in
the paper. No longer salient when applying xo-parametrization trick.

Y

Diffusion LM: Approximation 28
—

The simplified version of the canonical objective of maximizing

IE:XO ~Pdata [log Po (XO)]

is the variational lower bound of log py(xo), ? simplified as (NO
LONGER a valid lower bound but mathematically proved and
empirically more stable):

T

Lsnnple XO ZEq(xt|xo |:”:U’6'(Xt7) ﬂ(Xt,X0)||2] ’
t=1

where [i(x¢,%p) is the mean of posterior g(x¢—1|xXo, x¢) which is
a closed form Gaussian, and g (xy,t) is the predicted mean of

po(x¢—1|x¢), computed by a neural network (Transformer /
U-Net).

Proof in Appendix E of Diffusion-LM. Uses the closed form
solution of the KL divergence of Gaussian.

2the canonical objective comes from ICML’15 w

https://proceedings.mlr.press/v37/sohl-dickstein15.html

Diffusion LM: Training Objective 29
—

The simplified version of the canonical objective of maximizing
Exo~paara 10820 (X0)] is

T

Laimple(%0) = > By |01, 1) = isxe x0)|I]
t=1

where [i(xy,Xg) is the mean of ¢(x;—1|x0,x%¢), and pg(x¢,t) is the
predicted mean of py(x;—1|x¢). The end2end version objective:

L2251 (W) =Eq, (xgerfw) | Lsimpio(X0) + [EMB(w) — pig(x1, 1)

— log py (x01w)|

Y

Diffusion LM: Denoiser 30

—

Two options:

» Transformer: BERT-base model. Performs better, became
the default choice.

» U-Net: make only one change to the standard U-Net,
turning all 2D-convolutional layers into 1D-convolutional
layers so that the model handles text sequence instead of
image matrix.

Set diffusion steps to be 2,000 in practice. When running
multiple (i.e. 3), steps of optimization steps (i.e. Adagrad), for
each diffusion steps, reduce 2,000 to 200.

Y

Recap: BERT-base 31

Figure: The architecture is the same as BERT-base, but Diffusion LM

trained it from scratch. (link to BERT paper)

https://arxiv.org/abs/1810.04805

Recap: U-Net

32

164 64
128 64 64 2
input
output
image ;
tg bl bl **|*| segmentation
ile o ol o
Al & § & map
o o 4
Jl ol s
5518
' 128 128
256 128
o M alz
HEE Jlglgl
g1zl & t

=>conv 3x3, ReLU

>
oo d
g 8 =+ copy and cro
512 512 1024 512 1 Py | i
5 —_— max pool 2x2
sl & [eie # max p
€ ¥ i 43 3 4 up-conv 2x2
e e
- 3 o = conv 1x1

Figure: In Diffusion LM, we replace all the 2D conv layers with 1D
conv layers. (link to U-Net paper)

Y

https://arxiv.org/abs/1505.04597

Diffusion LM: Transformer v.s. U-Net 33

—

Architecture Choice
2.0

15
1.0

0.5

0.0

Transformer

U-Net

Figure: Transformer v.s. U-Net. Note that the less Im score, the
better. Therefore, Transformer is better.

Y

Diffusion LM: Embedding & Rounding 34
—

Embedding;:
» EMB(w;) € R? embed discrete word w; into vector space.

> EMB(w) = [EMB(w1), ... EMB(w,)] € R™ denotes the
embedding of a length-n sequence. A Markov transition is
applied:

qg(x0|w) = N(EMB(w), 001 ,

which is trained end-to-end with the other components.

Rounding: achieved by choosing the most probable word
according to

n

arg max pg(w|xp) = Hp@(wifxz‘))
i=1

where pg(w;|z;) is a softmax distribution.

Y

Diffusion LM: Learned v.s. Random Embeddings 35
—

1.50
1.25
1.00
0.75
0.5

o

0.25
0.00

II I- learned emb

mmm random emb
—— -
128

4

w

N

iy

ROCstory

_]

B |earned emb
128

Figure: Learned v.s. Random Embeddings. Note that the less Im
score, the better. Learned Embedding is better. Figure 6 Row 1 in
the paper. Conclusion: Fixed pre-trained embedding or random
Gaussian embeddings are worse than the embedding trained via
an end-to-end framework.

Y

Diffusion LM: the Learned Embedding 36
—

Learned Embeddings

NOUN
PROPN
AUX
V- VERB
ADP
DET
AD)
PRON
ADV
SCON]
NUM

Figure: Figure 3 in the paper: A t-SNE plot of the learned word
embeddings. Each word is colored by its POS (part-of-speech).

Y

Diffusion LM: Reducing Rounding Errors 37
—

Recall that rounding is achieved by choosing argmax of
W|XO Hp9 wzlxz s

where pg(w;|z;) is a softmax distribution. Ideally, this rounding
is sufficient to map back to discrete text. The denoising steps
should make xg lie exactly on the embedding of some word.

Y

Diffusion LM: Reducing Rounding Errors 37
—

Recall that rounding is achieved by choosing argmax of
W|XO Hp9 wzlxz s

where pg(w;|z;) is a softmax distribution. Ideally, this rounding
is sufficient to map back to discrete text. The denoising steps
should make xg lie exactly on the embedding of some word.

But the problem is that, empirically, the model fails to generate
Xo that commits to a single word.

Y

Diffusion LM: Reducing Rounding Errors
—

One Explanation: not emphasizing single commit on x¢ enough.

T
Emmple XO ZEq(xt|xo [”MG(Xtv) - ﬂ(xtvx0)||2:|

» The model ug(xy,t) directly predicts the mean of
po(xi—1|x¢) at every denoising step t.

» The constraint that xg has to commit to a single word
embedding will only appear in the terms with ¢ near 0, and
require careful tuning to emphasize those terms.
(Appendix H)

» Quick Fix: xg-parameterized model

T
ﬁ(;c%e—simple(x()) = ZExt [fo(x¢,t) — X0”2 :

38

Diffusion LM: Result of the Quick Fixation 39
—

parametrization

8-Xg
Hl s
6
4
2
0

16 64 128
Figure: Figure 4 right half in the paper. Parametrizing by xq

consistently performs well, whereas parametrizing by ¢ works fine for
small dimensions, but quickly collapses for larger dimensions.

Y

Diffusion LM: Reducing Rounding Errors 40
—

Xo-parameterized model:

T
‘Ci%e—simple(xo) = Z Ex, ”f@(xt’ t) - X0H2 >
t=1

where our re-parameterized model fy(xy,t) learns x¢ directly.

In the decoding phase, same intuition could be used in
clamping trick:
» Maps the predicted fy(x¢,t) to its nearest word
embedding sequence at every step.

» Forces the predicted vector to commit to a word for
intermediate diffusion steps, making predictions more

precise and reducing rounding errors.

Diffusion LM: Clamping Trick 41
—

Before clamping trick:

xi—1 = Vag fo(xe,t) + V1 — oge,

After clamping trick:

x¢—1 = Vg - Clamp(fy(x¢, 1)) + V1 — age,

Y

Diffusion LM: Controllable Text Generation 42
—

Controlling xg.7 over c is equivalent with decoding from the
joint inference problem posterior:

T

p(xorle) = [pxi-1lxi,¢),
t=1

which can be decomposed to a sequence of control problems at
each diffusion step:

p(Xt—1|Xt, C) 08 p(Xt—ﬂXt) 'p(C|Xt—1,Xt)

And according to a Yang Song et al’s paper from ICLR’21
(Section 5), there are conditional independence assumptions
that we can use to simplify:

plelxi—1,%x¢) = p(e[xi-1) w

https://arxiv.org/abs/2011.13456

Diffusion LM: Controllable Text Generation 43
—

Therefore, for the t-th step, we run gradient update on x;_1:
Vx, ; logp(xt—1]xt,¢) = Vx, , log p(x¢—1(x¢)+Vx, , log p(c[x¢—1)

where the two differentiable terms are parameterized by:
» log p(x¢—1|x¢): Diffusion LM (for fluency);

» logp(c|x¢—1): an arbitrary neural network classifier (for
control);

respectively.

Diffusion LM: Controllable Text Generation 43
—

Therefore, for the t-th step, we run gradient update on x;_1:
Vx, ; logp(xt—1]xt,¢) = Vx, , log p(x¢—1(x¢)+Vx, , log p(c[x¢—1)

where the two differentiable terms are parameterized by:
» log p(x¢—1|x¢): Diffusion LM (for fluency);

» logp(c|x¢—1): an arbitrary neural network classifier (for
control);

respectively.

In practice, we add fluency regularization where X is a
hyper-param:

Avxt—l logp(xt—l‘xt) + vxt—l 1ng(C|Xt_1))

=y

Diffusion LM: Minimum Bayes Risk (MBR) Decodings4
—

Steps:

1. Collect a set of samples S drawn from the Diffusion-LM,
instead of having one single best option.

2. Select the sample that achieves the minimum expected risk
under a given loss function (e.g., negative BLEU score).

3. A low quality sample would be dissimilar from the
remaining samples, and penalized by the loss function.

Y

Diffusion LM: Highlighted Result 45
—

Semantic Content | Parts-of-speech | Syntax Tree | Syntax Spans Length

ctrl 1 Im | crlt ImJ ‘ ctrlt Im| ‘ ctrl t Im] ‘ ctrlt Im
PPLM 9.9 532 - - - - - - - -
FUDGE 69.9 2.83 27.0 796 179 339 | 542 403 | 469 3.11
Diffusion-LM ~ 81.2 2.55 90.0 5.16 860 371 | 93.8 253 | 999 216
FT-sample 72.5 2.87 89.5 4.72 648 572|263 288 | 981 3.84
FT-search 89.9 1.78 93.0 331 764 324 | 544 219 | 1000 1.83

Table 2: Diffusion-LM achieves high success rate (ctrl 1) and good fluency (Im J.) across all 5 control
tasks, outperforming the PPLM and FUDGE baselines. Our method even outperforms the fine-tuning
oracle (FT) on controlling syntactic parse trees and spans.

Y

Diffusion LM: Highlighted Result 46
—

Syntactic Parse (S (S (NP *) (VP * (NP (NP**) (VP * (NP (ADJP**)*))))) * (S (NP***) (VP *(
ADJP (ADIP*)))))

FUDGE Zizzi is a cheap restaurant . [incomplete]

Diffusion-LM Zizzi is a pub providing family friendly Indian food Its customer rating is low

FT Cocum is a Pub serving moderately priced meals and the customer rating is high

Syntactic Parse (S (S (VP * (PP * (NP **))))* (NP***) (VP * (NP (NP **)(SBAR (WHNP *) (S (
VP*(NP**))))))*)

FUDGE In the city near The Portland Arms is a coffee and fast food place named The Cricketers which is not
family - friendly with a customer rating of 5 out of 5.

Diffusion-LM Located on the riverside , The Rice Boat is a restaurant that serves Indian food .

FT Located near The Sorrento, The Mill is a pub that serves Indian cuisine.

Table 3: Qualitative examples from the Syntax Tree control. The syntactic parse tree is linearized
by nested brackets representing the constituents, and we use the standard PTB syntactic categories.
Tokens within each span are represented as * . We color failing spans red and bold the spans of
interest that we discuss in §7.1.

FT refers to fine-tuned GPT-2 without plug-and-play setting.

Y

	Outline
	Introduction
	References
	Background

	Diffusion-LM
	Motivation
	Background
	Architecture
	Noise Schedule
	Training Objective
	Denoiser
	From Continuous to Discrete
	Controllable Text Generation
	Highlighted Results

