
Large Memory Layers with Product Keys 1

Reading Group Slides

Presenter: Zhiping (Patricia) Xiao

1NeurIPS’ 19, Authors: Guillaume Lample, Alexandre Sablayrolles,
Marc’Aurelio Ranzato, Ludovic Denoyer, Hervé Jégou

Outline 2

Introduction
Background
Learnable Product Key Memories

Experiments
Evaluation
Results

Introduction

q

Related Work 4

Memory Network: 2

I Memory Networks (ICLR’ 15)

I End-To-End Memory Networks (NIPS’ 15)

I Learning to Transduce with Unbounded Memory (NIPS’
15)

I Hybrid computing using a neural network with dynamic
external memory (Nature’ 16)

I Scaling Memory-Augmented Neural Networks with Sparse
Reads and Writes (NIPS’ 16)

2Thanks to Xingjian for helping with organizing the related works.

https://arxiv.org/pdf/1410.3916.pdf
https://arxiv.org/pdf/1503.08895.pdf
https://arxiv.org/pdf/1506.02516.pdf
https://arxiv.org/pdf/1506.02516.pdf
https://www.dropbox.com/s/0a40xi702grx3dq/2016-graves.pdf
https://www.dropbox.com/s/0a40xi702grx3dq/2016-graves.pdf
https://arxiv.org/pdf/1610.09027.pdf
https://arxiv.org/pdf/1610.09027.pdf

Memory Network Dive-in 5

I MemNN: input feature map I, generalization (update
memories by new input) G, output feature map O,
response R. Uses argmax over the memories.

I End2end Memory Networks: embedding matrices A for
input and C for output, resulting in “key-value” pair, and
use softmax; can be cast as a traditional RNN.

I Unbounded Memory: neural Stack, neural Queue, neural
DeQue.

I DNC: more focus on memory management, controller 3

uses previous inputs.

I Sparse Reads and Writes: Sparse Access Memory (SAM),
with r/w constrained to a sparse subset, along with a
sparse memory management scheme.

3Generates interface parameters and output parameters.

Links 6

1. The paper is available on ArXiv.

2. Code: https://github.com/facebookresearch/XLM

3. A minimalist example: https://github.com/
facebookresearch/XLM/blob/master/PKM-layer.ipynb

4. An attempt translating into mxnet:
https://github.com/PatriciaXiao/gluon-nlp/blob/

master/scripts/bert/model/pkm.py.

Enjoy! �

https://arxiv.org/pdf/1907.05242.pdf
https://github.com/facebookresearch/XLM
https://github.com/facebookresearch/XLM/blob/master/PKM-layer.ipynb
https://github.com/facebookresearch/XLM/blob/master/PKM-layer.ipynb
https://github.com/PatriciaXiao/gluon-nlp/blob/master/scripts/bert/model/pkm.py
https://github.com/PatriciaXiao/gluon-nlp/blob/master/scripts/bert/model/pkm.py

General Introduction 7

Figure: Mr. LeCun’s comments on
Twitter.

Figure: The first author’s brief
introduction on Twitter.

The general idea and motivation 8

I A function m : Rd → Rn, acts as a layer in a neural
network, offering a large capacity to it.

I Only brings slight computational overhead, in both
training and testing; scaling to very large sizes while
keeping exact search on the key space.

I Product-key enables fast indexing by reducing the search
space dramatically.

I Inspired by the success of BERT and GPT-2, putting the
memory layers into transformer.

Standard key-value memory layer (m : Rd → Rn) 9

Figure: x, the input, processed through the query network, produces a
query vector q, which is compared to all the |K| keys, and then output
the sparse weighted sum of over the memories associated with the
selected keys. All parameters of the memory are trainable, while only
k selected memory slots are updated for each input.

Query network (q : x 7→ Rdq) 10

I Typically linear mapping or multi-layer perceptron.

I Adding a batch normalization layer on top of the query
network helps increasing key coverage during training. 4

I In the paper’s setting, dq = 512, d > dq.

4Confirmed by experiments in Section 4.5.

Key assignment 11

Figure: Split query q into q1, q2; search in sub-key set 1 and 2 for the
k (k = 2 in the illustrated example) nearest neighbors (measured by
the inner product) of q1 and q2 respectively, thus k × k keys are
implicitly selected. The two subsets induce product keys K (|K| = 9 in
this case). The k keys nearest to q in product keys are guaranteed
to be included in this k × k candidate keys.

Standard Key 12

I = Tk
(
q(x)Tki

)
Get k nearest neighbors

w = Softmax
(

(q(x)Tki)i∈I

)
Normalize the top-k scores

m(x) =
∑
i∈I

wivi # Aggregate selected values

where Tk represents the top-k operator, selecting the top-k
indices.

Product Key 13

I Having two vector codebooks C1 and C2, whose keys are the
sub-key sets mentioned before. The sub-keys’ dimension is
dq
2 .

I C1 and C2’s outer product w.r.t. the vector
concatenation operator 5 is defined as the product key set.

K = {(c1, c2)|c1 ∈ C1, c2 ∈ C2}

I Get the nearest k neighbors of q1 in C1 as IC1 , and that of
q2 in C2 as IC2 .

I {(c1,i, c2,j)|i ∈ IC1 , j ∈ IC2} is guaranteed to include the
most similar k keys from K.

5a.k.a. the Cartesian product construction.

Proof of “guaranteed” (1/2) 14

Statement : The candidate set C = {(c1,i, c2,j)|i ∈ IC1 , j ∈ IC2} is
guaranteed to include the most similar k keys from K.

Proof : The distance is defined by the inner product between
vectors, thus ∀c1 ∈ C1, c2 ∈ C2,

(c1, c2)
T q = cT1 q1 + cT2 q2

Assume ∃(c∗1, c∗2) /∈ C, but is one of the k nearest neighbors of q
in K, ∃(c′1, c′2) among the top-k candidates that:

c′T1 q1 + c′T2 q2 ≤ (c∗1)
T q1 + (c∗2)

T q2

(c′1 − c∗1)
T q1 ≤ (c∗2 − c′2)

T q2 (1)

Proof of “guaranteed” (2/2) 15

For convenience, let’s denote the set of nearest k neighbors of q1
in C1 as C′1, and similarly C′2 for q2 in C2.
By definition of the k nearest neighbors, ∀c∗1 /∈ C′1, ∀c∗2 /∈ C′2, and
∀c′1 ∈ C′1,∀c′2 ∈ C′2,

(c′1 − c∗1)
T q1 ≥ 0

(c∗2 − c′2)
T q2 ≤ 0

From (1) we have:

(c′1 − c∗1)
T q1 = 0 = (c∗2 − c′2)

T q2

As long as q1 6= 0 and q2 6= 0, c′1 = c∗1 and c′2 = c∗2, which
conflicts the assumption that ∃(c∗1, c∗2) /∈ C.
If q1 = 0 or q2 = 0, the distance will be always 0 thus all keys
are the nearest.
The k nearest neighbors of q in K is guaranteed to be in C.

Multi-head Attention 16

I Multi-head mechanism makes the model more expressive.
Increases the key usage and improves the performance.

I H heads, each has its own query network, and own set of
sub-keys, but sharing the same values.

I The final output is simply the sum:

m(x) =

H∑
i=1

mi(x)

I Different from standard multi-head attention: the input
(query) is not split into H heads, create H queries instead.

I In practice: different heads attend to very different keys,
and very different values of the memory.

Time Complexity 17

Given the memory with keys K of size |K|, and latent space
dimension dq (q ∈ Rdq):

I Standard key-value memory layer:
I Each computation of distance takes dq operations.
I O(|K| × dq)

I Product-key memory layer:
I |C1| = |C2| =

√
|K|

I Finding k × k candidates from subsets:
2×O(

√
|K| × dq

2) = O(
√
|K| × dq)

I Finding the best k keys from k × k candidates: O(k2 × dq),
since the priority list for O(k log k × dq) is less compliant
with GPU architectures.

I The overall complexity:

O
(

(
√
|K|+ k2)× dq

)
≈ O(

√
|K| × dq)

The layer’s role in model 18

Figure: Typical transformer block
with Feed-Forward Network.
x = x + FFN(x)

Figure: Modified transformer
block with Product-Key Memory.
x = x + PKM(x)

The product-key memory layer is analogous to a sparse FFN
layer with a very large hidden state. In practice, they only
replaced N ∈ {0, 1, 2} layers’ FFN layer in the transformer
model.

Experiments

q

Dataset 20

I Extracted from the public Common Crawl.

I 40 million English news articles in training set, 5000 in
validation and test set each.

I Did not shuffle sentences, allowing the model to learn long
range dependencies.

Metrics (1/2) 21

To measure performance of the model:

I Perplexity on the test set (the smaller the better).

PP (S) = P(w1w2 . . . wN)−
1
N

=
(N∏

i=1

1

p(wi|w1w2 . . . wi−1)

)− 1
N

Metrics (2/2) 22

To evaluate memory usage:

I Fraction of accessed values: #{zi 6= 0}
I Expect to use as many keys as possible, around 100%.

I KL (Kullback–Leibler) divergence between distributions of
z and the uniform distribution log(|K|) +

∑
zi log(zi)

I Given input x from test set, w(x) is the sparse (at most
H × k non-zero entries) of the weights of the keys accessed
in the memory.

I z′i =
∑

x w(x)i, and z′ ∈ R|K|

I z = z′

‖z′‖1

I Reflects imbalance in the access patterns to the memory,
the lower the better.

Main Experiments Results 23

I Either increasing the dimension or increasing the number
of layers leads to significant perplexity improvements in all
models.

I Adding memory is more beneficial than increasing the
number of layers.

I In general, the more memory layers added, the better the
performance would be.

Ablation Study Results 24

I Dominant factor for inference time is the number of
accessed memory values, which is governed by the number
of memory heads h, and the parameter k, NOT the
memory size.

I Query batch-normalization helps.

I The location to insert the memory layer could be tricky.
The worst position is at layer 1, right after the input token
embeddings; insert right before the softmax output (at
layer 6) is also not a good idea. The best position to insert
at is an intermediate layer.

I Increasing h and / or k help reach better performance and
better memory usage, but there’s a trade-off between speed
and performance. h = 4 and k = 32 is good in practice.

I Better than flat keys (standard keys) from all aspects.

Thank You

Q & A

	Introduction
	Background
	Learnable Product Key Memories

	Experiments
	Evaluation
	Results

