Large Memory Layers with Product Keys !
Reading Group Slides

Presenter: Zhiping (Patricia) Xiao

!NeurIPS’ 19, Authors: Guillaume Lample, Alexandre Sablayrolles,
Marc’Aurelio Ranzato, Ludovic Denoyer, Hervé Jégou

Outline
—

Introduction
Background
Learnable Product Key Memories

Experiments
Evaluation
Results

Introduction

=

Related Work
—

Memory Network: 2
» Memory Networks (ICLR’ 15)
» End-To-End Memory Networks (NIPS’ 15)

» Learning to Transduce with Unbounded Memory (NIPS’
15)

» Hybrid computing using a neural network with dynamic
external memory (Nature’ 16)

» Scaling Memory-Augmented Neural Networks with Sparse
Reads and Writes (NIPS’ 16)

2Thanks to Xingjian for helping with organizing the related works.

https://arxiv.org/pdf/1410.3916.pdf
https://arxiv.org/pdf/1503.08895.pdf
https://arxiv.org/pdf/1506.02516.pdf
https://arxiv.org/pdf/1506.02516.pdf
https://www.dropbox.com/s/0a40xi702grx3dq/2016-graves.pdf
https://www.dropbox.com/s/0a40xi702grx3dq/2016-graves.pdf
https://arxiv.org/pdf/1610.09027.pdf
https://arxiv.org/pdf/1610.09027.pdf

Memory Network Dive-in

—

» MemNN: input feature map I, generalization (update
memories by new input) G, output feature map O,
response R. Uses argmax over the memories.

» End2end Memory Networks: embedding matrices A for
input and C' for output, resulting in “key-value” pair, and
use softmazx; can be cast as a traditional RNN.

» Unbounded Memory: neural Stack, neural Queue, neural
DeQue.

» DNC: more focus on memory management, controller
uses previous inputs.

» Sparse Reads and Writes: Sparse Access Memory (SAM),
with r/w constrained to a sparse subset, along with a
sparse memory management scheme.

3Generates interface parameters and output parameters.

Links
—

1. The paper is available on ArXiv.
2. Code: https://github.com/facebookresearch/XLM

3. A minimalist example: https://github.com/
facebookresearch/XLM/blob/master/PKM-layer.ipynb

4. An attempt translating into mxnet:
https://github.com/PatriciaXiao/gluon-nlp/blob/
master/scripts/bert/model/pkm.py.

Enjoy! ©

https://arxiv.org/pdf/1907.05242.pdf
https://github.com/facebookresearch/XLM
https://github.com/facebookresearch/XLM/blob/master/PKM-layer.ipynb
https://github.com/facebookresearch/XLM/blob/master/PKM-layer.ipynb
https://github.com/PatriciaXiao/gluon-nlp/blob/master/scripts/bert/model/pkm.py
https://github.com/PatriciaXiao/gluon-nlp/blob/master/scripts/bert/model/pkm.py

General Introduction

—

’ Yann LeCun (" Follow

Replace some layers of a BERT-like
architecture with "product key memory

layers" and get better perplexity for half the

computation.
Yes, NLP requires large memory capacity.

: Guillaume Lample @GuilaumeLample
Our new paper: Large Memory Layers with Product Keys

-~ aniv.org/abs/1907.05242

© We created a key-value memory layer that can increase model

- capacity for a negligible computational cost. A 12-layer...

Show this thread
6:47 AM - 12 Jul 2019
160 Retweets 491 Likes

92192909

Qs 0. Q

Figure: Mr. LeCun’s comments on
Twitter.

&

Guillaume Lample

Follow v
@GuilaumeLample

Our new paper: Large Memory Layers
with Product Keys
arxiv.org/abs/1907.05242

We created a key-value memory layer
that can increase model capacity for a
negligible computational cost. A 12-
layer transformer with a memory
outperforms a 24-layer transformer, and
is 2x faster! 1/2

- aim 1600,0 PR

- dim 1024, 2 PR

24 (BERT large)

6000 0 10000 12000
Inference speed (words per second)

4:49 AM - 12 Jul 2019

2sreees e QO OSBL OO E

Figure: The first author’s brief
introduction on Twitter.

The general idea and motivation

—

v

A function m : R — R”, acts as a layer in a neural
network, offering a large capacity to it.
Only brings slight computational overhead, in both

training and testing; scaling to very large sizes while
keeping exact search on the key space.

Product-key enables fast indexing by reducing the search
space dramatically.

Inspired by the success of BERT and GPT-2, putting the
memory layers into transformer.

Standard key-value memory layer (m : R? — R")

—

key selection keys values
\ ki U1
"‘ le) —1 ks 1573
uer N
X ngtwo);k o) —_ki ;i Z w;v;
pei O
o Kik| vik|

Figure: x, the input, processed through the query network, produces a
query vector ¢, which is compared to all the |K| keys, and then output
the sparse weighted sum of over the memories associated with the
selected keys. All parameters of the memory are trainable, while only
k selected memory slots are updated for each input.

Query network (¢ : z — qu)

» Typically linear mapping or multi-layer perceptron.

» Adding a batch normalization layer on top of the query
network helps increasing key coverage during training. 4

» In the paper’s setting, d, = 512, d > d,.

10

4Confirmed by experiments in Section 4.5.

Key assignment

sub-key set 1 product keys
C1 C1 c4
C2] c
C3 1 c'3
C2 ¢
sub-key set 2 2 C:g
C2 C3
c4 C3 c
c C3 c
3 C3 3

query

a1

92

sub-key retrieval
C3 '

al £ 0
O ’

k? candidate keys

Co c'y
Co c's
C3 c'y
C3 cly
l key selection
Co c'y
C3 c'y

k selected keys

Figure: Split query ¢ into q1, g2; search in sub-key set 1 and 2 for the
k (k = 2 in the illustrated example) nearest neighbors (measured by
the inner product) of ¢; and ¢y respectively, thus k x k keys are

implicitly selected. The two subsets induce product keys K (|| =9 in
this case). The k keys nearest to ¢ in product keys are guaranteed
to be included in this k x k candidate keys.

Standard Key
—

I="Tx (q(x)Tk:,> # Get k nearest neighbors
w = Softmax((q(w)Tki)i€I> # Normalize the top-k scores

m(x) = Z w;v; # Aggregate selected values
1€T

where Tj, represents the top-k operator, selecting the top-k
indices.

12

Product Key
—

» Having two vector codebooks C; and Co, whose keys are the

sub-key sets mentioned before. The sub-keys’ dimension is
q

5 -
» C1 and Cy’s outer product w.r.t. the vector
concatenation operator ° is defined as the product key set.

K= {(61,62)|81 €Ci,c9 € CQ}
> Get the nearest k neighbors of ¢; in C; as Z¢,, and that of

g2 in Co as Zg,.

» {(c14,¢2,5)i € I¢,, j € I¢, } is guaranteed to include the
most similar k keys from K.

Sa.k.a. the Cartesian product construction.

Proof of “guaranteed” (1/2)

Statement: The candidate set C = {(c14,¢2,5)|i € Z¢,,j € Ie, } is
guaranteed to include the most similar k keys from K.

Proof: The distance is defined by the inner product between
vectors, thus Ve; € Cq, o € Co,

(c1, Cz)Tq = Cffh + CQTQ2

Assume 3(c},) ¢ C, but is one of the k nearest neighbors of ¢
in K, 3(c}, ¢,) among the top-k candidates that:

Ao+ e < (@) a+ () e

(ch =)' < (5~) o (1)

14

Proof of “guaranteed” (2/2) 15

For convenience, let’s denote the set of nearest k& neighbors of ¢;
in C; as C}, and similarly C} for g2 in Cs.

By definition of the k nearest neighbors, Vei ¢ C,Vch ¢ C), and
Ve, € C1,Vdy € C),

From (1) we have:
(h—e)ar=0=(c;—ch) g

As long as ¢1 # 0 and g2 # 0, ¢} = ¢} and ¢, = ¢}, which
conflicts the assumption that 3(cj, c3) ¢ C.

If ¢1 = 0 or g2 = 0, the distance will be always 0 thus all keys
are the nearest.

The k nearest neighbors of g in K is guaranteed to be in C.

Multi-head Attention
—

» Multi-head mechanism makes the model more expressive.
Increases the key usage and improves the performance.

» H heads, each has its own query network, and own set of
sub-keys, but sharing the same values.

» The final output is simply the sum:

H
m(x) = Z m;(x)
i=1

» Different from standard multi-head attention: the input

(query) is not split into H heads, create H queries instead.

» In practice: different heads attend to very different keys,
and very different values of the memory.

16

Time Complexity 17

Given the memory with keys K of size ||, and latent space
dimension d, (q € R%):
» Standard key-value memory layer:
» Each computation of distance takes d, operations.
> O(IK] x dq)
> Product-key memory layer:

> [Cif = [Caf = VIK]

» Finding k£ x k candidates from subsets:

dq _
2 x O(VIK| x 3) = O(VIK] x dg)
» Finding the best k keys from k x k candidates: O(k? x d,),
since the priority list for O(klogk x dg) is less compliant

with GPU architectures.

> The overall complexity:

O((VIKT + 1) x dy) ~ O(/IK] x dy)

The layer’s role in model 18

—

(PKM)

: Feed-forward ,;) %
AI,—{ Self-attention M layer (FFN) Self-attention ‘2‘>_L Memory layer

Figure: Typical transformer block Figure: Modified transformer
with Feed-Forward Network. block with Product-Key Memory.
x=x+ FFN(z) x=x+ PKM(z)

The product-key memory layer is analogous to a sparse FFN
layer with a very large hidden state. In practice, they only
replaced N € {0, 1,2} layers’ FFN layer in the transformer
model.

Experiments

=

Dataset

» Extracted from the public Common Crawl.

> 40 million English news articles in training set, 5000 in
validation and test set each.

» Did not shuffle sentences, allowing the model to learn long
range dependencies.

20

Metrics : 1 : 2)

To measure performance of the model:

» Perplexity on the test set (the smaller the better).

PP(S) = P(wiws ... wy) N
N

i =
- (H p(wi|wiws . . .wi_l))

=1

21

Metrics : 2 : 2)

To evaluate memory usage:
» Fraction of accessed values: #{z; # 0}
» Expect to use as many keys as possible, around 100%.

» KL (Kullback-Leibler) divergence between distributions of
z and the wuniform distribution log(|K|) + Y zilog(z;)
» Given input z from test set, w(z) is the sparse (at most
H x k non-zero entries) of the weights of the keys accessed
in the memory.
> 2zl =Y, w(x);, and 2’ € RIFI
» Reflects imbalance in the access patterns to the memory,
the lower the better.

22

Main Experiments Results

—

» Either increasing the dimension or increasing the number
of layers leads to significant perplexity improvements in all
models.

» Adding memory is more beneficial than increasing the
number of layers.

» In general, the more memory layers added, the better the
performance would be.

23

Ablation Study Results
—

» Dominant factor for inference time is the number of
accessed memory values, which is governed by the number
of memory heads h, and the parameter £, NOT the
memory size.

» Query batch-normalization helps.

» The location to insert the memory layer could be tricky.
The worst position is at layer 1, right after the input token
embeddings; insert right before the softmax output (at
layer 6) is also not a good idea. The best position to insert
at is an intermediate layer.

» Increasing h and / or k help reach better performance and
better memory usage, but there’s a trade-off between speed
and performance. h = 4 and k = 32 is good in practice.

» Better than flat keys (standard keys) from all aspects.

Thank You

Q& A

	Introduction
	Background
	Learnable Product Key Memories

	Experiments
	Evaluation
	Results

