
Multi-Task Learning

Zhiping (Patricia) Xiao

Tuesday Paper-Reading Group

January 21, 2020

Outline 1

Overview
List of Papers
Background

Architecture
Adaptive Feature Sharing
Soft Parameter-Sharing

Optimization
Optimal Task Weights
Multi-Objective Optimization

Application
Examples

Overview

q

List of Papers 2

1. An Overview of Multi-Task Learning in Deep Neural
Networks (ArXiv’17, cited by 521) 1

2. Fully-adaptive Feature Sharing in Multi-Task Networks
with Applications in Person Attribute Classification
(CVPR’16)

3. Training Complex Models with Multi-Task Weak
Supervision (AAAI’19)

4. Multi-Task Learning Using Uncertainty to Weigh Losses
for Scene Geometry and Semantics (CVPR’17)

5. (*) Multi-Task Learning as Multi-Objective Optimization
(NeurIPS’18)

1Originally a blog.

https://arxiv.org/pdf/1706.05098.pdf
https://arxiv.org/pdf/1706.05098.pdf
https://arxiv.org/pdf/1611.05377.pdf
https://arxiv.org/pdf/1611.05377.pdf
https://arxiv.org/pdf/1611.05377.pdf
https://doi.org/10.1609/aaai.v33i01.33014763
https://doi.org/10.1609/aaai.v33i01.33014763
https://arxiv.org/abs/1705.07115
https://arxiv.org/abs/1705.07115
https://papers.nips.cc/paper/7334-multi-task-learning-as-multi-objective-optimization.pdf
https://papers.nips.cc/paper/7334-multi-task-learning-as-multi-objective-optimization.pdf

Concepts 3

Multi-Task Learning (MTL) is often referred to as joint
learning, learning with auxiliary tasks, etc.

It could be applied to either neural models or non-neural
models.

The relationship among the tasks matter a lot.

Multiple tasks working together should ideally perform better
on each task than they work individually.

In Non-Neural Models (e.g. SVM) 4

Assume that we have T tasks, each corresponding to a model
mt where t = 1, 2, . . . , T , and d parameters, written as a column
vector a.,t:

a.,t =

a1,t...
ad,t

Put T columns together we have a matrix A ∈ Rd×T . ai is the
ith row of A containing the ith feature across all tasks.

Assumption: All tasks share the same important dimensions.

Sparsity Assumption: all models share a small set of features,
which means that all but a few rows of A are zero.

Explaining the use of LASSO I 5

Recall that `1 norm is also called LASSO (Least Absolute
Shrinkage and Selection Operator). It is a constraint on the
sum of β and thus forces all but a few parameters to be exactly
0. (Explanation comes from here.)

Considering a simple model y = βx and β ∈ R, we have a loss
function:

L = min‖y − βx‖22
= min

(
yT y − 2βyTx+ ‖βx‖22

)
= min

(
β2xTx− 2βyTx

)
Assuming the least-square solution β̂ ≥ 0

https://stats.stackexchange.com/questions/74542/why-does-the-lasso-provide-variable-selection

Explaining the use of LASSO II 6

To which we could add a norm to regularize β. If it is an `1
norm we have:

L = min
(
β2xTx− 2βyTx+ λ|β|

)
Taking L’s derivative on β, we have:

2xTxβ̂ − 2yTx+ λsign(β) = 0

When β̂ > 0 we might be able to reach the optimal point, when
it is smaller than zero, since we have an β̂ > 0, we know that
yTx > 0, and λ > 0 by definition; the curve is decreasing (the

optimal point yT x+λ/2
xT x

> 0 will be on the positive side).

Explaining the use of LASSO III 7

∴ When using `1 norm we have:

β̂ =

{
yT x−λ/2
xT x

β > 0, yTx > λ/2

0 β ≤ 0

If it is an `2 norm instead of `1, then:

2xTxβ̂ − 2yTx+ λβ̂ = 0

β̂ =
yTx

xTx+ λ/2

Since λ > 0 and xTx ≥ 0, by definition we have yTx > 0, thus
β̂ > 0.

Group-Sparse Regularization 8

Revisit the definition of A ∈ Rd×T , whose tth column is a.,t,
containing all parameters from task t:

a.,t =

a1,t...
ad,t

ith row of A is ai, containing the ith feature across all tasks.

Constraints are therefore applied to A to make only a few
features non-zero, regularizing by `1/`q norm: 2

∥∥∥∥∥

‖a1‖q
‖a2‖q

...
‖ad‖q

∥∥∥∥∥
1

2* Distributed Multi-Task Relationship Learning (KDD’17)

https://arxiv.org/pdf/1612.04022.pdf

Consider Tasks’ Relations 9

Adding another constraint: 3

Ω = ‖a‖2 +
λ

T

T∑
t=1

‖a.,t − a‖2

where a =
∑T

t=1 a.,t/T .

It enforces the task parameters to be optimized towards their
mean, so as to make them more related.

3* Learning Multiple Tasks with Kernel Methods (JMLR’05)

http://www.jmlr.org/papers/volume6/evgeniou05a/evgeniou05a.pdf

MTL methods for Deep Learning (1) 10

Figure: Hard parameter sharing. 4

4More popular than soft-parameter sharing.

MTL methods for Deep Learning (2) 11

Figure: Soft parameter sharing.

Architecture

q

Fully-Adaptive Feature Sharing 12

Fully-adaptive Feature Sharing in Multi-Task Networks with
Applications in Person Attribute Classification (Yongxi Lu et
al.) 5

I Base model: CNN.

I Tasks are pre-defined, the network architecture is
automatically-determined.

I Hard-parameter-sharing.

5Person attributes: face, cloth, etc.

https://arxiv.org/pdf/1611.05377.pdf
https://arxiv.org/pdf/1611.05377.pdf
https://arxiv.org/pdf/1611.05377.pdf

Fully-Adaptive Feature Sharing 13

Figure: Splitting of the layers only applies to one layer at a time, a
greedy top-down manner starting from the top layer.

Fully-Adaptive Feature Sharing 14

How to split the current layer?

By measuring two tasks’ (i, j) affinity (similarity) A(i, j), using
the votes from data samples.

Denote the prediction of the task i for sample n as sni , and the
ground-truth label tni , then the error margin is mn

i = |tni − sni |.
mi ∈ RN . If for task i, a sample n makes mn

i ≥ E{mi}, we say
n is a difficult example for task i. Labels are binary in this
case.

With this definition of possible n’s, we define the affinity of two
task A(i, j) as:

A(i, j) =P(eni = 1, enj = 1) + P(eni = 0, enj = 0)

=E{eni enj + (1− eni)(1− enj)}

Fully-Adaptive Feature Sharing 14

How to split the current layer?

By measuring two tasks’ (i, j) affinity (similarity) A(i, j), using
the votes from data samples.

Denote the prediction of the task i for sample n as sni , and the
ground-truth label tni , then the error margin is mn

i = |tni − sni |.
mi ∈ RN . If for task i, a sample n makes mn

i ≥ E{mi}, we say
n is a difficult example for task i. Labels are binary in this
case.

With this definition of possible n’s, we define the affinity of two
task A(i, j) as:

A(i, j) =P(eni = 1, enj = 1) + P(eni = 0, enj = 0)

=E{eni enj + (1− eni)(1− enj)}

Fully-Adaptive Feature Sharing 14

How to split the current layer?

By measuring two tasks’ (i, j) affinity (similarity) A(i, j), using
the votes from data samples.

Denote the prediction of the task i for sample n as sni , and the
ground-truth label tni , then the error margin is mn

i = |tni − sni |.
mi ∈ RN . If for task i, a sample n makes mn

i ≥ E{mi}, we say
n is a difficult example for task i. Labels are binary in this
case.

With this definition of possible n’s, we define the affinity of two
task A(i, j) as:

A(i, j) =P(eni = 1, enj = 1) + P(eni = 0, enj = 0)

=E{eni enj + (1− eni)(1− enj)}

Fully-Adaptive Feature Sharing 15

The affinity of two branches (k, l) is Ab(k, l):

Ãb(k, l) = meanik

(
min
jl
A(ik, jl)

)
Ãb(l, k) = meanil

(
min
jk

A(il, jk)
)

Ab(k, l) =
Ãb(k, l) + Ãb(l, k)

2

Determined by the largest distance between their associated
tasks.

Fully-Adaptive Feature Sharing 16

There’s always a maximum value of clusters c (originally the
same as # tasks, will be decreased to the number of clusters in
the above layer).

The number of clusters selected is d, 1 ≤ d ≤ c. gd : [d]→ [c] is
the temporary layer’s grouping function, associating the current
layer with the above one.

The loss function at layer l is (optimized over gd):

Ll(gd) = (d− 1)L02
pl + αLS(gd)

where L0 is the unit cost for branch-creation, pl is the number
of pooling layers above the layer l, larger branching factor α
encourages more branches, LS(gd) is a penalty for separation.

Fully-Adaptive Feature Sharing 17

For each newly-created branch i ∈ [d], its separation cost is:

Lis(gd) = 1− meank∈g−1(i)

(
min

l∈g−1(i)
Ab(k, l)

)
where k, l are branches from the above layer. It measures the
maximum distances (minimum affinity) between the tasks
within the same group. It penalizes dissimilar tasks grouped
into the same branch.

Ls(gd) =
1

d

∑
i∈[d]

Lis(gd)

Soft Parameter-Sharing at a glance 6
18

Figure: The shared representations is learned by utilizing a linear
combination of input activation maps from both tasks, at each layer.
Cross-stitch units model shared representations as a linear
combination of input activation maps.

6(*) Cross-stitch Networks for MTL (CVPR’16)

https://arxiv.org/pdf/1604.03539.pdf

Soft Parameter-Sharing at a glance 19

Given two activation maps xA, xB from layer l from tasks A
and B, we learn linear combinations x̃A, x̃B of them
parameterized by α, and feed those linear combinations into the
next layer. Specifically, at location (i, j):[

x̃ijA
x̃ijB

]
=

[
αAA αAB
αBA αBB

] [
xijA
xijB

]

The above is called stitching operation.

Soft Parameter-Sharing at a glance 20

Figure: Applying the above-mentioned cross-stitching to two AlexNet,
the units applied only after pooling layers and fully connected layers.

Optimization

6

Weighted Combination of Loss 21

Normally MTL’s objective is a linear combination of multiple
objectives.

Alex Kendall et al. provides a more interpretable estimation by
using task-dependent uncertainty 7, estimated by Bayesian
modeling, to weigh the losses. We start the computation of
L(W,σ1, . . . , σK) from defining multi-task likelihood:

p(y|fW (x)) = N (y; fW (x), σ2)

p(y1, . . . , yK |fW (x)) = p(y1|fW (x)) . . . p(yK |fW (x))

= N (y1; f
W (x), σ21) . . .N (yK ; fW (x), σ22)

where the distribution N (y; fW (x), σ2) is estimated by
sampling from Softmax(fW (x)).

7Claimed to be captured by σ, while data uncertainty by µ.

https://arxiv.org/abs/1705.07115

Weighted Combination of Loss 22

The probability density of observing a single data point x is:

p(x;µ, σ) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
The laws of logarithms:

log(ab) = log(a) + log(b)

log(
a

b
) = log(a)− log(b)

log(an) = n log(a)

Therefore (− log(
√

2π) is constant and could be removed latter):

log p(x;µ, σ) = −(x− µ)2

2σ2
− log(σ)− log(

√
2π)

Weighted Combination of Loss 23

For a single-task case, the log-likelihood (to be maximized) is:

log p(y|fW (x)) ∝ − 1

2σ2
‖y − fW (x)‖2 − log σ

and for multi-task (where there’re only 2 tasks), we take the
negative of the log-likelihood to compute our objective
L(W,σ1, σ2):

L(W,σ1, σ2) ∝
1

2σ21
‖y1 − fW (x)‖2 +

1

2σ22
‖y2 − fW (x)‖2

+ log σ1σ2

Weighted Combination of Loss 24

Let’s define the loss for the two outputs (y1 and y2) respectively:

L1(W) = ‖y1 − fW (x)‖2

L2(W) = ‖y2 − fW (x)‖2

Then we have:

L(W,σ1, σ2) ≈
1

2σ21
L1(W) +

1

2σ22
L2(W) + log σ1σ2

Interpret: when σi goes up, the relative weight of task i
λi = 1

2σ2
i

goes down.

(*) There’s an extension from Gaussian distribution to
Boltzmann (Gibbs) distribution for classification likelihoods’
computation in the paper (p 5).

Weighted Combination of Loss 25

Training: In practice, they train the network to predict the log
variance (s = log σ2), because:

I the loss avoids any division by zero, thus it is more
numerically stable than regressing the variance, σ2 directly.

I we can regress unconstrained scalar values, since exp(·) > 0.

Multi-Objective Optimization 26

Ozan Sener & Vladlen Koltun work on solving the problem of
multiple tasks might conflict.

They used the multiple-gradient-descent algorithm (MGDA)
optimizer, together with a definition of the Pareto optimality
for MTL (in brief, no other solutions dominants the current
solution), they solve the problem by solving the
KKT (Karush-Kuhn-Tucker) conditions.

I Basic Idea: Use multi-objective Karush-Kuhn-Tucker KKT
conditions and find a descent direction that decreases all
objectives.

I Can applicable to any problem that uses optimization
based on gradient descent.

https://papers.nips.cc/paper/7334-multi-task-learning-as-multi-objective-optimization.pdf
https://hal.inria.fr/inria-00389811v2/document
http://www.seas.ucla.edu/~vandenbe/ee236b/lectures/duality.pdf

Application

q

MeTal: Multi-Task Weak Supervision 27

Figure: The goal is to apply a set of weak supervision sources
S = {s1, s2, . . . , sm} to an unlabeled dataset X consisting of n data
points, and finally apply the label to an end-model fw : X → Y.

MeTal: Multi-Task Weak Supervision 28

Training Complex Models with Multi-Task Weak Supervision

I Feasible Set of input: X , feasible set of labels: Y, t tasks in
total, m multi-task weak supervision sources; X and Y are
independent.

I X ∈ X : a data point

I Y ∈ Y: unobservable ground-truth task label,
Y = [Y1, Y2, . . . , Yt]

T , where for each Yi, Yi ∈ {1, 2, . . . , ki}.
I Examples of tasks: (1) Person v.s. Organization; (2)

Doctor v.s. Lawyer (or N/A); (3) Hospital v.s. Office (or
N/A).

I Tasks’ labels are logically subsumption. e.g.
Y1 = PERSON , Y2 = DOCTOR, Y3 = N/A makes a valid
Y ∈ Y. (Y2 = DOCTOR implies Y3 and Y1.)

https://arxiv.org/pdf/1810.02840.pdf

MeTal: Multi-Task Weak Supervision 29

Y is not directly observable, instead, we have access to m
multi-task weak supervision sources si ∈ S, i = 1, 2, . . . ,m;
which emits label vectors λi.

Each λi contains labels for some of the tasks, but not for all of
them. For the null / abstaining labels, we use 0 to denote. The
coverage set τi ⊆ {1, 2, . . . , t} is fixed for each si, indicating
the tasks that this source could emit non-zero labels for.

Still consider the previous example, assume that for a certain X
the corresponding Y is [PERSON,DOCTOR,N/A]T , we’ll
probably see λi = [PERSON, 0, N/A]T , where the coverage set
τi = {1, 3}.

MeTal: Multi-Task Weak Supervision 30

There’s a non-directional Gsource = {V,E} that is supposed to
be given by user who runs this model, where
V = {Y, λ1, λ2, . . . , λm}. If (λi, λj) doesn’t exists, it means that
the two sources are independent of each other. All (λi, Y)
always exists.

We define the set of cliques (complete subgraph) of Gsource as
C. Recall that Y is not observable, therefore we define
observable cliques set O ⊂ C, s.t. we can use it to help with a
matrix completion task.

(*) The users also need to provide Gtask, whose structure
expresses logical relationships between tasks.

MeTal: Multi-Task Weak Supervision 31

Figure: For example, in this case, C =
{Y, λ1, λ2, λ3, λ4, {Y, λ1}, {Y, λ2}, {Y, λ3}, {Y, λ4}, {λ1, λ2}, {Y, λ1, λ2}},
and O = {λ1, λ2, λ3, λ4, {λ1, λ2}}

MeTal: Multi-Task Weak Supervision 32

For C ∈ C, defining ψ(C) as the vector of indicator random
variables for all combinations of all but one of the labels
emitted by each variable (Gsource vertices) in clique C, a
minimal set of statistics. For ψ(C), it is a collection of all ψ(C)
where C ∈ C.

ψ(C, yC) = 1{∩i∈C Vi = (yC)i|(yC)i ∈ Yτi}
ψ(C) ∈ {0, 1}

∏
i∈C(|Yτi |−1)

The separator set cliques of the junction tree (assumed to be
unique in a simplification condition) is annotated as S ⊆ C.

MeTal: Multi-Task Weak Supervision 33

What to do next: to learn the label model Pµ(Y |λ), which is
parameterized by µ, a vector of source correlations and
accuracies, and outputs a single probabilistic label vector Ỹ .

I µ = E[ψ(C)]
I Cov[ψ(O), ψ(S)] is a function of µ, and it is unobserved.

MeTal: Multi-Task Weak Supervision 34

Recall that we said: ΣOS = Cov[ψ(O), ψ(S)] is a function of µ,
and it is unobserved. We also have:

I ΣO = Cov[ψ(O)] be observed.

I ΣS = Cov[ψ(S)] = Cov[ψ(Y)] is estimable, it is a
function of P (Y).

I The mathematical calculation is based on:

Cov[ψ(O ∪ S)] ≡ Σ =

[
ΣO ΣOS
ΣT
OS ΣS

]
All the remaining is matrix computation details, working on
matrix completion. For details, please visit the longer version of
this paper on ArXiv.

https://arxiv.org/pdf/1810.02840.pdf

	Outline
	Overview
	List of Papers
	Background

	Architecture
	Adaptive Feature Sharing
	Soft Parameter-Sharing

	Optimization
	Optimal Task Weights
	Multi-Objective Optimization

	Application
	Examples

