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Convolution → CNN
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Convolution → CNN

Convolution: (f ∗ g)(n) =
∫∞
−∞ f (τ)g(n − τ)dτ

Discrete Convolution: (f ∗ g)(a, b) =
∑

h

∑
k f (h, k)g(a− h, b − k)

In a way, weighed sum.

g → the graph; f → the filter (kernel)
input → {convolution, activation, pooling}∗ → output
(e.g. classification: output → flatten→ fully connected → softmax)
Weight to be learned.
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Vertex Domain v.s. Spectral Domain
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Vertex Domain v.s. Spectral Domain

Euclidean structure:

matrix
e.g. image
Applying CNN, feature map could be extracted from the receptive field
by using the kernel.

Non-Euclidean structure:

graph G = 〈V ,E 〉
Couldn’t apply CNN: n neighbors is different, no fixed-sized kernel
could apply; translation invariance of discrete convolution is not
guaranteed.
How to extract features in general graphs?

Vertex (spacial) domain: (1) define receptive field (deal with each
node); (2) extract features of neighbors (non-convolutional way)
Spectral domain
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Graph Fourier Transformation
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Graph Signal Processing (GSP)

Brief Intro

Graph Signal Processing makes it possible to do convolution on
generalized graphs. e.g. Graph Fourier transformation enables the
formulation of fundamental operations on graphs, such as spectral
filtering of graph signals.

Convolution in the vertex domain is equivalent to multiplication
in the graph spectral domain.
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SGC → GCN
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SGC → GCN

Brief Intro

Graph Convolutional Networks (GCN) is a localized first-order
approximation of Spectral Graph Convolution.
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GCN → r-GCN

Brief Intro

Relational Graph Convolutional Networks (r-GCN) is an extension of
Graph Convolutional Networks (GCN) on relational data.
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The Emerging Field of Signal Processing on Graphs

Discrete
Convolution

Convolutional
Neural

Networks
(CNN)

Spectral
Graph

Convolution
(SGC)

Graph
Convolutional

Networks
(GCN)

Relational
GCN (r-GCN)

Spectral
Domain

Graph Signal
Processing

(GSP)

Vertex
Domain

Zhiping Xiao (UCLA) GCN December 04, 2018 14 / 65



The Emerging Field of Signal Processing on Graphs

Objective

To offer a tutorial overview of graph-based data analysis (especially
arbitrary graphs, weighted graphs), from a signal-processing
perspective.

Examples of graph signals covers: transportation networks (e.g.
epidemic), brain imaging (e.g. fMRI images), machine vision,
automatic text classification.

Irregular, high dimensional data domain; goal is to extracting
information efficiently.

Constructing, analyzing, manipulating graphs, as opposed to
signals on graphs.
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The Emerging Field of Signal Processing on Graphs

What corresponding relations can we get between signal processing
tasks and graph data?

Classical Discrete-Time Signal Graph Signal

N samples with N values N vertices (/ data points) with N val-
ues

a classical discrete-time signal with N
samples: vector in RN

a graph signal with N vertices: vector
in RN

Modulating a signal on the real line by multiplying by a complex exponential

corresponds to translation in the Fourier domain1.

What makes the problem settings different?

A discrete-time signal ignores key dependencies in irregular data
domain.

Different in fundamental, non-trivial properties.

1Modulation and Sampling. Click here link to some EE slides.
Zhiping Xiao (UCLA) GCN December 04, 2018 16 / 65

http://web.stanford.edu/class/ee102/lectures/samp_mod.pdf


The Emerging Field of Signal Processing on Graphs

Challenge # 1: Shifting

Weighted graphs are irregular structures that lack a shift-invariant notion
of translation. f (t − n) no longer makes sense. ab

aSpecial case: ring graph, where Laplacians are circulant and the graphs are
highly regular.

bThus convolution could not be applied directly.
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The Emerging Field of Signal Processing on Graphs

Challenge # 2: Transform

The analogous spectrum in the graph setting is discrete and irregularly
spaced. Recall that:

Modulating a signal on the real line by multiplying by a complex
exponential corresponds to translation in the Fourier domain.

“Transformation” to the graph spectral domain is needed, otherwise
convolution could not be applied.
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The Emerging Field of Signal Processing on Graphs

Challenge # 3: Downsampling

Downsampling means “delete every other data point” for a discrete-time
signal. But what is downsampling for graph signal? What is “every other
vertex”?

Essential for pooling.
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The Emerging Field of Signal Processing on Graphs

Challenge # 4: Multiresolution

With a fixed notion of downsampling, we still need a method to generate
coarser version of the graph to achieve multiresolution. And the coarse
version should still capture the structural properties embedded in the
original graph. Essential for pooling.
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The Emerging Field of Signal Processing on Graphs

Problem Definition (1/2)

Analyzing signals defined on an undirected, connected, weighted
graph G = {V, E ,W}, where set of vertices is finite |V| = N, edges is
represented by E and W is a weighted adjacency matrix.

Edge e = (i, j) connects vertices vi and vj , the entry Wi ,j represents
the weight of the edge. If e = (i, j) does not exists then Wi ,j = 0.

If the graph G is not fully connected and has M > 1 connected
components, separate the graph into M parts and independently
process the separated signals on each subgraph.

A signal / function defined on the vertices of the graph: f : V → R
may be represented as a vector f ∈ RN , where fi represents the
function value at vi .
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The Emerging Field of Signal Processing on Graphs

Problem Definition (2/2)

Wi ,j could be naturally given by the application, or defined by
ourselves. One common way is the threshold Gaussian kernel (for
some parameters θ and κ):

Wi ,j =

{
exp− [dist(i,j)]2

2θ2 if dist(i, j) ≤ κ
0 otherwise

Solution: define operations on weighted graphs differently.
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The Emerging Field of Signal Processing on Graphs

Convolution

Convolution
on Graph

Graph
Laplacian

Graph Fourier
Transform

Filtering

Other topics mentioned in the paper: Translation, Modulation & Dilation, Graph
Coarsening & Downsampling & Reduction (Challenge # 3 and 4), vertex domain
design, etc.
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The Emerging Field of Signal Processing on Graphs

The classic Fourier transform:

f̂(ξ) = 〈f, eπiξt〉 =

∫
R
f(t)eπiξtdt

is the expansion of f in terms of the complex exponentials (eπiξt); the
expansion results are the eigenfunctions2 of 1-d Laplace operator 4:

−4(eπiξt) = − ∂

∂t
eπiξt = (πξ)eπiξt

or, in other ways,

f̂(ω) =

∫
f(t)e−iωtdt, 4(e−iωt) = −ωe−iωt

eiωt = cos (ωn) + i sin (ωn), i =
√
−

2Should correspond to eigenvectors in graph settings.
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The Emerging Field of Signal Processing on Graphs

Graph Fourier transform f̂ : of any f ∈ RN , of all vertices of G, expansion
of f :

f̂(λl) = 〈f, ul〉 =
N∑
i=

f(i)u∗l (i)

u∗l (i) is the conjugate of ul(i) in the complex space.
The inverse graph Fourier transform is then given by:

f(i) =
N−∑
l=

f̂(λl)ul(i)

Intuitive understanding of inverse Fourier transform3: we know all
frequency and phase information about a signal then we may reconstruct
the original signal precisely.
With ⊗ for convolution, � for simple multiplication:

X ⊗ Y = Fourierinverse(Fourier(X )� Fourier(Y))

3Yunsheng’s slides: change of basis
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The Emerging Field of Signal Processing on Graphs

Filtering4 in the frequency domain:

f̂out(ξ) = f̂in(ξ)ĥ(ξ)

its inverse Fourier transform:

fout(t) = (fin ∗ h)(t) =

∫
R
f̂in(ξ)ĥ(ξ)eπiξtdξ

Convolution on Graph: frequency filtering with the complex exponentials
replaced by the graph Laplacian eigenvectors (ul(i)).

fout(i) = (f ∗ h)(i) =
N−∑
l=

f̂(λl)ĥ(λl)ul(i)

where ĥ(·) is the transfer function of the filter, fin omitted in to be f .

4Yunsheng’s slides: feature aggregation; Defferrard’s work: convolution + non-linear
activation.

Zhiping Xiao (UCLA) GCN December 04, 2018 26 / 65



The Emerging Field of Signal Processing on Graphs

1-d Laplacian 4: the second derivative
Graph Laplacian: A difference operator that satisfies

(Lf)(i) =
∑
j∈Ni

Wi,j [f(i)− f(j)]

where Ni is the set of vertices connected to vertex i by an edge.
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The Emerging Field of Signal Processing on Graphs

Graph Laplacian

What

D: diagonal matrix whose ith diagnal element di is equal to the sum
of the weights of all the edges incident to vi

combinatorial graph Laplacian / non-normalized graph Laplacian:
L = D −W

normalized graph Laplacian / symmetric normalized Laplacian:

L̃ = D−
1
2 LD−

1
2 = IN − D−

1
2 WD−

1
2 .a

asymmetric graph Laplacian: La = IN − P, where P = D−1W is the
random walk matrixb

aIN is N × N identity matrix.
bPi,j describes the probability of going from vi to vj in one step of a Markov

random walk on G.
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The Emerging Field of Signal Processing on Graphs

Graph Laplacian

What - in other words

L = D −W (when W is A, which means that each edge has weight
1):

L(u, v) =


dv if u = v (dv is the degree of node v)

−1 if u 6= v, (u, v) ∈ E
0 otherwise

L̃ = D−
1
2 LD−

1
2 = IN − D−

1
2 WD−

1
2 (when W is A):

L̃(u, v) =


1 if u = v, dv 6=  (dv is the degree of node v)

− 1√
dudv

if u 6= v, (u, v) ∈ E
0 otherwise
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The Emerging Field of Signal Processing on Graphs

Graph Laplacian

What - more

The normalized and non-normalized graph Laplacians are both
examples of generalized graph Laplaciansa. Generalization: any
symmetric matrix whose i, jth entry is negative if there’s an edge
connecting vi, vj , zero if i 6= j and vi, vj not connected, may be
anything when i = j .

La has the same set of eigenvalues as L̃b.

Laplacian of a graph is also sometimes called: admittance matrix,
discrete Laplacian or Kirchohoff matrix.

It remains no clear answer when should we use which Laplacian
matrix.

aAlso called discrete Schr ödinger operators.
bIf ũl is an eigenvector of L̃ associated with λ̃l, then D−

1
2 ũl is an

eigenvector of La associated with the eigenvalue λ̃l
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The Emerging Field of Signal Processing on Graphs

An example of non-normalized L with W = A, L = D − A:
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The Emerging Field of Signal Processing on Graphs

Graph Laplacian properties:

(normalized / non-normalized) graph Laplacian (L, or L̃) is a real
symmetric matrix, with a complete set of orthonormal eigenvectors5,
which we denote by {ul} where l = 0, 1, . . . ,N − 1.

{ul} has associated real non-negative eigenvalues {λl}.
Lul = λlul

The amount of eigenvalues that appears to be 0 is equal to the
number of connected components of the graph.

Considering connected graphs only, we could order the eigenvalues as
 = λ ≤ λ · · · ≤ λN−.

The entire spectrum could be denoted as:

σ(L) = {λ, λ, . . . , λN−}

5Also known as graph Fourier modes.
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The Emerging Field of Signal Processing on Graphs

Graph Laplacian another expression:

L = U


λ0 0 · · · 0
0 λ1 · · · 0
...

...
. . .

...
0 0 · · · λN−1

U−1 = U


λ0 0 · · · 0
0 λ1 · · · 0
...

...
. . .

...
0 0 · · · λN−1

UT

where λi is eigenvalue, and U = (~u0, ~u1, . . . , ~uN), ~ui is column vector, and
is unit eigenvector. U−1 could be replaced by UT because UUT = IN .
Fourier transformation could be expressed as:

ĥ(L) = U


ĥ(λ0) 0 · · · 0

0 ĥ(λ1) · · · 0
...

...
. . .

...

0 0 · · · ĥ(λN−1)

UT , fout = ĥ(L)fin
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The Emerging Field of Signal Processing on Graphs

Graph Coarsening: (G = {V, E ,W})
1 Graph reduction: identify a reduced set of vertices V reduced

2 Graph contraction: assign edges and weights to connect the new set
of vertices, E reduced and W reduced .
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Something else to know

The convolution theorem defines convolutions as linear operators that
diagonalize in the Fourier basis (represented by the eigenvectors of
the Laplacian operator)6.

Fourier transform localize signals in frequency domain but not in time
domain.

Indeterminacy principles: one cannot be arbitrarily accurate in local
both in time and frequency.

The meaning of localize: to find where the signal is mostly
concentrated, and with what precision.

Vertex domain filtering (N (i, k) is i’s neighbors within K-hop):

fout(i) = bi,ifin(i) +
∑

j∈N (i,K)

bi,jfin(j)

6Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
(NIPS 2016)
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CNN on Graphs with Fast Localized Spectral Filtering
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CNN on Graphs with Fast Localized Spectral Filtering

Problem Settings

1 Data sets: MNIST and 20NEWS

2 G = {V, E ,W}, undirected connected weighted graph.

3 Focus on filtering, other parts remain default (such as the activation,
ReLU).

Contributions
1 A spectral graph theoretical formulation of CNNs on graphs;

2 Strictly localized spectral filters, limited to a radius of K (K hops from
the central vertex);

3 Low computational complexity, O(KE).

4 Low storage cost, stores the data and Laplacian (sparse, |E| values).

5 Efficient pooling strategya.

aRearrange into binary tree, analog to pooling of 1D signals
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CNN on Graphs with Fast Localized Spectral Filtering

Fast localized spectral filters:

Why?

Why not spatial filter, why spectral filter? - Spatial domain filter is
naturally localized, but spectral domain could also achieve
localization, while having more mathematically-supported operators,
etc.

Why emphasize “fast”? - a filter defined in the spectral domain is not
naturally localized, translations are costly due to the O(n2)
multiplication with the graph Fourier basis.

How?

A special choice of filter parametrization.
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CNN on Graphs with Fast Localized Spectral Filtering

Starting from signal processing:

Recall that: The Laplacian is indeed diagonalized by the Fourier basis
(the orthonormal eigenvectors) U = [u, u, . . . , uN−] ∈ RN×N .

Let Λ = diag([λ0, . . . , λN−1]), then we have L = UΛUT .

The graph Fourier transform of a signal x ∈ RN is then defined as
x̂ = UT x ∈ RN , with inverse x = Ux̂ . This transformation enables
the formation of fundamental operations, such as filtering, just as on
Euclidean spaces.

Recall that: X ⊗ Y = Fourierinverse(Fourier(X )� Fourier(Y))

Definition of convolutional operator:

(f ∗ h)(∗G) = U((UT f)� (UTh))

where � is the element-wise Hadamard product7.

7Hadamard product: (A� B)i,j = Ai,j ∗ Bi,j
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CNN on Graphs with Fast Localized Spectral Filtering

A signal x filtered by gθ as

y = gθ(L)x = gθ(UΛUT )x = Ugθ(Λ)UTx

where a non-parametric filter whose parameters are all free would be
defined as gθ(Λ) = diag(θ), with θ ∈ RN be a vector of Fourier
coefficients.

Non-parametric filters are not localized in space and have learning
complexity of O(N). Solution: using a polynomial filter:

gθ(Λ) =
K−∑
k=

θkΛ
k

where θ ∈ RK is a vector of polynomial coefficients.
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CNN on Graphs with Fast Localized Spectral Filtering

Something we skipped in the first paper8:
Kronecker delta function δi ∈ RN .

δn(i) =

{
1 if i = n

0 otherwise

Usage: for localization.

8It is in the translation part.
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CNN on Graphs with Fast Localized Spectral Filtering

What is the value of filter gθ, at vertex j, centered at vertex i?

(gθ(L)δi)j = (gθ(L))i,j =
∑
k

θk(Lk)i,j
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CNN on Graphs with Fast Localized Spectral Filtering

Let dG denote the shortest path distance,
dG(i, j) > K means that (LK)i,j = 0.

Spectral filters represented by K th-order polynomials of the Laplacian
are exactly K -localized.

The learning complexity is O(K ), the support size of the filter, thus
same complexity as classic CNN.
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CNN on Graphs with Fast Localized Spectral Filtering

Note that computing y = Ugθ(Λ)UTx is still expensive when having to do
multiplication with the Fourier basis U .
How to achieve fast filtering?

Solution

Parameterize gθ(L) as a polynomial function that can be recursively
computed from L, then it costs us K multiplications of L, time complexity
will be reduced from O(N) to O(K|E|).

Existing tools in the field of GSP: Chebyshev expansion and Krylov
subspace.

The reason why Chebyshev and not Krylov: simpler.

Chebyshev expansion: T(x) = 0 , T(x) = x,
Tk(x) = xTk−(x)− Tk−(x).
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CNN on Graphs with Fast Localized Spectral Filtering

Recall the parameterized filter:

gθ(Λ) =
K−∑
k=

θkΛ
k

With Chebyshev expansion, we have

gθ(Λ) ≈
K−∑
k=

θkTk(Λ̃)

where Λ̃ = Λ/λmax − IN is a diagonal matrix of scaled eigenvalues lie in
[−1, 1]. Now θ ∈ RK becomes a vector of Chebyshev coefficients.
With L̃ = L/λmax − IN , we have x̄0 = x, x̄1 = L̃x,
x̄k = Tk(L̃)x = 2L̃x̄k− − x̄k−:

y = gθ(L)x ≈
K−∑
k=

θkTk(L̃)x = [x̄, . . . x̄K−]θ
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CNN on Graphs with Fast Localized Spectral Filtering

ys,j =

Fin∑
i=

gθi,j (L)xs,i ∈ RN

E: loss energy over a mini-batch of S samples. Loss energy E is the
cross-entropy with an l regularization on the weights of all FCk
(Fully-Connected layer with k hidden units) layers.
Training: back propagation using E’s gradients over θ and x .
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CNN on Graphs with Fast Localized Spectral Filtering

Pooling: coarsening to create a balanced binary tree (map two unmatched
neighbors each time); then the number of vertices is reduced.

Adjacent nodes are hierarchically merged at coarser levels.
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CNN on Graphs with Fast Localized Spectral Filtering
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Discrete
Convolution

Convolutional
Neural

Networks
(CNN)

Spectral
Graph

Convolution
(SGC)

Graph
Convolutional

Networks
(GCN)

Relational
GCN (r-GCN)

Spectral
Domain

Graph Signal
Processing

(GSP)

Vertex
Domain

Zhiping Xiao (UCLA) GCN December 04, 2018 49 / 65



Semi-Supervised Classification with GCN

Problem definition

Task: semi-supervised entity classification

Data sets: citation network, knowledge graph, random graph.

Graph: undirected, weight = 1 if connected otherwise 0.

Contribution

A layer-wise propagation rule, that is simple and well-behaved,
working for NN models.

Semi-supervised classification, that is fast and scalable, using GCNa.

aPrevious methods always use graph Laplacian regularization term in the loss
function to smooth the graph and make up for the absence of labels. But they
have an assumption of obvious similarity of neighbor, which leads to restriction
in model capacity
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Semi-Supervised Classification with GCN

Staring from graph signal processing again:

Using normalized graph Laplacian:

L̃ = D−
1
2 LD−

1
2 = IN − D−

1
2 WD−

1
2 (W is simplified to be A)

Using the same approximation used in the previous paper
(parameterize using Chebyshev polynomials).

Further limit K = 1 (only the direct neighbor is reachable at each
layer), and stack multiple layers.

Add self-connection to each vertices.
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Semi-Supervised Classification with GCN

Recall that, previously, with Chebyshev expansion, we have:

gθ(Λ) ≈
K−∑
k=

θkTk(Λ̃)

where Λ̃ = Λ/λmax − IN is a diagonal matrix of scaled eigenvalues lie in
[−1, 1]. With L̃ = L/λmax − IN , we have x̄0 = x, x̄1 = L̃x,
x̄k = Tk(L̃)x = 2L̃x̄k− − x̄k−:

y = gθ(L)x ≈
K−∑
k=

θkTk(L̃)x = [x̄, . . . x̄K−]θ

Now we have layer-wise linear model by limit K = 1, and further
approximate λmax ≈ 2. We are expecting that by stacking multiple such
layers the model should perform well.
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Semi-Supervised Classification with GCN

y = gθ(L)x ≈
K−∑
k=

θkTk(L̃)x = [x̄, . . . x̄K−]θ

becomes:

y = gθ(L)x ≈ θx+ θ(L− IN )x = θx− θL̃x

where L̃ is the normalized Laplacian (L̃ = D−

AD−


 ) in this case.

With θ∗ = θ − θ, we have:

y = gθ(L)x ≈ θ∗
(
IN +D−


AD−




)
x

With Ã = A+ IN and D̃ii =
∑

j Ãij , Θ ∈ RC×F is the filter parameters,

Z ∈ RN×F be the convolved signal matrix, we have:

Z = D̃−

 ÃD̃−


XΘ
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Semi-Supervised Classification with GCN

Z = D̃−

 ÃD̃−


XΘ

Adding an activation function, we get the form of:

H(l+1) = σ
(
D̃−


 ÃD̃−


H(l)W (l)

)
which is the well-known form of GCN. In practice they used ReLU as the
non-linear activation function.
In details9 (ci,j =

√
didj , di = |Ni|):

h
(l+1)
i = σ

( ∑
j∈Ni



ci,j
h

(l)
j W

(l)
)

All the expressions could be generalized as10:

h
(l+1)
i = σ

(
(
∑
m∈Mi

gm(h
(l)
i , h

l
j)
)

9See the Weisfeiler-Lehman algorithm in appendix
10Will be seen in r-GCN part.
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Semi-Supervised Classification with GCN

Downstream task: semi-supervised classification
Loss function:

L = −
∑
l∈YL

F∑
f=

Ylf lnZlf

1 YL: set of labeled nodes (indices)

2 F : number of labels of the nodes

3 Z : predicted outcome, softmax of the output of the network.
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Modeling Relational Data with GCN (r-GCN)

Discrete
Convolution

Convolutional
Neural

Networks
(CNN)

Spectral
Graph

Convolution
(SGC)

Graph
Convolutional

Networks
(GCN)

Relational
GCN (r-GCN)

Spectral
Domain

Graph Signal
Processing

(GSP)

Vertex
Domain
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Modeling Relational Data with GCN (r-GCN)

Problem Settings

Tasks: entity classification and link prediction.

Data sets: knowledge graph.

Relations are directed, but the adjacent matrices we use contains
each relation and its reverse.

Motivation

Tasks on more general (heterogeneous) graphic structure: knowledge
graph completion.

Solution

GCN + weighed sum of neighbors from different relations; regularization
applied to weights so as to reduce overfitting problem.
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Modeling Relational Data with GCN (r-GCN)

GCN model

h
(l+1)
i = σ

( ∑
m∈Mi

gm(h
(l)
i , h

(l)
j )
)

h
(l)
i Hidden state of node vi in

the lth layer. size: Rd ((l)).

d(l) lth layer’s representa-
tion’s dimension.

σ(·) Nonlinear activation
function (e.g. ReLU)

Mi Incoming messages for
node vi , always (cho-
sen to be) identical to
the incoming edges.

gm(·,·) A message-specific NN-like function,
or simply a linear transformation
(g(hi , hj ) = Whj ). Kipf and Welling
did it the weight matrix way.

r-GCN model

h
(l+1)
i =σ

(
(
∑

r∈R
∑
j∈N r

i

1
ci,r

W
(l)
r h

(l)
j +W

(l)
0 h

(l)
i

)
R Set of all relations.

N r
i Set of neighbor (indices)

of node vi under relation
r.

ci ,r Problem-specific normalization constant,
could be learned or chosen in advance (in
their paper, chosen to be |N r

i |).

W
(l)
 h

(l)
i A single self-connection of a special rela-

tion type to ensure that representation at
layer l is passed to corresponding part of
layer l + . (In practice, an identity ma-
trix is added when representing the adja-
cent matrices.)

W
(l)
r The weight to be reg-

ularized (next slide) and
learned (next next slide).
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r-GCN: ways of regularizing W
(l)
r

Basis decomposition

W (l)
r =

B∑
b=1

a
(l)
rb V

(l)
b

V
(l)
b Basis transformations to be learned, simi-

lar with traditional weights. ∈ Rd(l+1)
×

Rd(l)
.

a
(l)
rb Coefficients, the only parameter that de-

pends on r, dimension related with sup-
port and number of basis (B), it is a pa-
rameter that is assigned individually to
each adjacent matrix (|2R + 1| matrices
in total, also called support).

B Number of base, user-
specified parameter, some-
times called “number of
coefficients” in their ex-
pression

Block-diagonal-decomposition

W (l)
r =

B⊕
b=1

Q
(l)
rb

W
(l)
r Are block-diagonal matri-

ces: (Q
(l)
r , Q

(l)
r . . . Q

(l)
Br).

note∗ Actually not implemented
for node classification
task.

note∗ can be viewed as sparsity
constraints (whereas ba-
sis decomposition can be
viewed as weight shar-
ing).
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r-GCN: downstream tasks (Knowledge Graph Completion)

Entity Classification

L = −
∑
i∈Y

K∑
k=1

tik lnh
(L)
ik

L Categorical cross-entropy
loss.

Y Nodes that have labels.

tik Ground truth labels.

h
(L)
ik k th entry of node i at layer

L (Layer L is the output
layer.)

Link Prediction

L=− 1
(1+ω)|ε̂|

∑
(s,r,o,y)∈τ y log l

(
f (s,r ,o)

)
(1)

+(1−y) log

(
1−l
(
f (s,r ,o)

))
(2)

ei ei = h
(L)
i , use r-GCN as

encoder.

f (s, r , o) DistMult factorization is used,
f (s, r, o) = eTs Rr eo .

(s, r , o) s, o are node (indices), r is
the relation between them.

y y = 1 for positive triples, 0 for negative
triples. Negative sampling is used.

τ All triples (real + cor-
rupted).

R Rr is a d*d diagonal ma-
trix to be learned.

l Logistic sigmoid function.
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The End
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