Deep Generative Models

Zhiping (Patricia) Xiao

University of California, Los Angeles

2021 Winter

Outline 1

—

Introduction

Deep Generative Models
Early Forms of DGMs
DGMs Training Procedure
Modern DGMs
A Unified View of DGMs

Applications
Generative Adversarial Networks (GANs)
Normalizing Flow (NF)
Integrating Domain Knowledge into Deep Learning

Y

Introduction

=

Motivation 2

—

This lecture is about a unifying theoretical perspective of
DGMs. The reason why we are interested:

» Trending: most popular research topic nowadays (CVPR,
ICML, NeurIPS, etc.)

» Promising: style transfer/fusion, music/image/text
generations, etc.

Y

Definition

—

Generative vs. Discriminative models:
> P(X,Y) vs. P(Y|X);
» Estimate distribution (G) instead of just boundaries (D);
> etc.

Deep: multiple layers of hidden variables.

Course Materials 4

—

Prof. Eric Xing’s lecture 12 & 13. !
» Lecture scribe: 12 & 13
» Lecture slides: 12 & 13
» Lecture record: 12 & 13

Prerequisites:

» Variational Inferences (Lecture 7&8 in Prof. Xing’s lecture,
in our reading group presented by Yewen.)

'www.cs.cmu.edu/ epxing/Class/10708-20/lectures.html W

https://www.cs.cmu.edu/~epxing/Class/10708-20/scribe/lec12_scribe.pdf
https://www.cs.cmu.edu/~epxing/Class/10708-20/scribe/lec13_scribe.pdf
https://www.cs.cmu.edu/~epxing/Class/10708-20/lectures/lecture12-DGM1.pdf
https://www.cs.cmu.edu/~epxing/Class/10708-20/lectures/lecture13-DGM2.pdf
https://scs.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=03fa28df-682e-49f9-a0aa-ab41015d0b03
https://scs.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=e6103038-3c50-48ed-b94e-ab41015d2801
https://www.cs.cmu.edu/~epxing/Class/10708-20/lectures.html

Deep Generative Models

=

Sigmoid Belief Nets 2 5
—

A kind of Hierarchical Bayesian Model. We estimate the hidden
values and the parameters to approximate the observations.

hidden 2/
hidden =z

visible x,

Figure: SBNs: lower layers are connect to upper layers via sigmoid

functions. Use 0 to denote all parameters connected to xy ,; 0; for
that connected to z(l) from zﬁl Then:

P(@rn = 161, 20) = o (07 247); p(2L) = 116, 287) = 0 (87 27).

2Neal, 1992 W

http://www.cs.toronto.edu/~bonner/courses/2016s/csc321/readings/Connectionist%20learning%20of%20belief%20networks.pdf

Helmholtz Machines 3 6
—

A dual, alternative process that unifies inference and
generative process:

» run generative model on input py(X), and also run
inference model on hidden values py(h).

> Use the process instead of a global math expression to
define the model.

» inference and generative models may or may not be related.
Xp = Ge(an), Xpn-1= Fqb(Xn)

3Dayan et al.,1995 W

https://www.cs.toronto.edu/~hinton/absps/helmholtz.pdf

Predictability Minimization *

—

Defines a training procedure. Not “model” in a rigorous way.

> Using alternative loss-functions. Containing an encoder
network and a predictor network.

> Use the training procedure instead of a global math
expression to define the model.
Suppose the latent representation (code) is y € R™, y; € [0,1],
then the predictor minimizes the prediction error on y, while
the encoder maximizes the prediction error (e.g. mean square
error).

*Schmidhuber, Since 1991 (see also: a conclusion on ArXiV) W

https://ieeexplore.ieee.org/document/6795705
https://arxiv.org/pdf/1906.04493.pdf

Resurgence of deep generative models I 8

Restricted Boltzmann machines (RBMs) [Smolensky, 1986]

» Equivalent to an infinitely-deep sigmoid network.

Deep belief networks (DBNs) [Hinton et al., 2006]

» Inference in DBNs is problematic due to “explaining away”
(e.g. one observation A, two potential causes B and C,
symptom A makes both B and C become more likely, but
once you pick a cause, then the other’s probability goes
back down °);

» Hybrid graphical model, some layers directed, some layers

undirected.

https://stanford.edu/~jlmcc/papers/PDP/Volume%201/Chap6_PDP86.pdf
http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf

Resurgence of deep generative models 11 9

Deep Boltzmann Machines (DBMs) [Salakhutdinov & Hinton,
2009]

» Undirected model.

Variational autoencoders (VAEs) [Kingma & Welling, 2014]
/ Neural Variational Inference and Learning (NVIL) [Mnih &
Gregor, 2014]

» The first modern actively-used DGMs.

» Old ideas (generative model py(x|z) and inference model
¢4(2|x)) but excellent executions, produce very nice results.

> Still, the two models can be very different.

» Trained in a variational way.

Y

http://proceedings.mlr.press/v5/salakhutdinov09a.html
http://proceedings.mlr.press/v5/salakhutdinov09a.html
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1402.0030
https://arxiv.org/abs/1402.0030

Resurgence of deep generative models 111 10

Generative adversarial networks (GANs) [Goodfellow et al,.
2014]

» Defining a procedure, again, not really a “model”.
Alternatively train Gy and Dy.

noise distribution

Figure: GAN:
ming maxp Ex, ., (log(D(Xreal))) + Exore (log(1 — D(G(xfake))))

And countless ideas following them. We have a zoo of such

e Y
SReference slides on “explaining away”.

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-825-techniques-in-artificial-intelligence-sma-5504-fall-2002/lecture-notes/Lecture15FinalPart1.pdf

Synonyms in the Literature 11

Posterior Distribution / Inference model
P Variational approximation
Recognition model

>

» Inference network (if parameterized as neural networks)

» Recognition network (if parameterized as neural networks)
>

(Probabilistic) encoder

“The Model” (prior + conditional, or joint) / Generative model
» The (data) likelihood model
» Generative network (if parameterized as neural networks)
> Generator
» (Probabilistic) decoder

Y

Training I 12
— S

Training of early forms of DGMs typically uses EM framework.

» via sampling / data augmentation: directly infer hidden
variable, given observations p(z|x)

z = {21,229}
21" ~ p(z1]z2,%)
25" ~ p(z2|z7?", %)

> variational inference: generator parameters 6, variational

inference model parameters ¢, optimizing an variational
lower bound:

log(p(x)) = Eqg, (zx)[log(ps (x|2))] + KL(g4 (z|x)[|p(2)) := L(6, ¢; x)
IB%XE(G, o;X)

)

Y

Training 11
—

> wake sleep: the loss-functions become different
Wake: minEq (;]x)[log(po(x|2))]

Sleep: m(gnEpo(x|z)[log(q¢(z]x))]

13

Training II1 14

|
|

6 0 I ¢ (] ¢
data augmentation variational inference wake sleep

Figure: Illustration of the training methods’ differences.

Y

Recap: Variational Inference — Idea 15

—

Variational: fancy name of “optimization”.

Variational Inference: studying inference problems via
optimization methods.

Challenge: Direct inference on P can be arbitrarily difficult,
often intractable in practice.
» Introduce tractable family of distributions @;

> Expect P and @) to be close to each other and perform
inference on Q.

» A convenient choice of distance-measuring: KL Divergence

Y

Recap: Variational Inference 16

—

Consider a generative model pg(x|z) , and prior p(z); we have
joint distribution:

po(x,2) = po(x[z)p(2)

Assume variational distribution g4 (z|x);
Objective: Maximize lower bound for log likelihood.

log(p(x)) = Eq, (4)x)[log(pe(x]2))] + KL(qg(2|x)||p(2)) := L(0, $; x)
where KL refers to KL Divergence (p, ¢ are distributions):

KL(gllp) = 3 a(a) log ;Ex;

There are multiple ways of expressing its objectives.w

Recap: Variational Inference — More on KLD 17

—

KL divergence (Kullback-Leibler Divergence) is a way of
comparing two probabilistic distributions. (H: entropy.) ©

KL(qllp) = Eq(x) [log q(x) — logp(X)]
= Z)(log g(x) — log p(x))

q(x)
—Z log (%)

KL(ql[p) = Eqx) [log q(x) — logp(X)]
= Z)(log g(x) — log p(x))

— Z)log q(x Z q(x) log p(x)

T

= H((x)) - q(x) [log p(x)] W
SReference on Variational Inference. Reference on KL.

https://www.countbayesie.com/blog/2017/5/9/kullback-leibler-divergence-explained
https://ermongroup.github.io/cs228-notes/inference/variational/

Recap: Variational Inference 18

—

Maximizing the variational lower bound:
L(0, d;x) = Eq, (%) [l0g(po (x[2))] + KL (g4 (2[x)||p(2))
= log p(x) — KL(gy(z[x)]|ps(2|x))

“E-Step”: 7
max L(0, ;%)

“M-Step”:
max L(0, ¢;x)

Equivalently: minimize free energy.

F(0,¢;x) = —log p(x) + KL(q4(z|x)||pe(z|x))

"To call it EM is misleading but there is a correspondence. W

Recap: Log-Derivative Trick I 19

Always used when deriving expectation over distribution. ®

VoEp,[as] = Vi / Pods

= / Vopeqs (Leibniz rule)

Po
= / PoVologpeqs (Log-derivative trick)

= Ep, 94V log o]

Y

Recap: Log-Derivative Trick 11 20

The reason why we can’t stop in the middle is that, Vgpgy will
not in general be a valid probability density, so we can’t use:

VOEpg Q¢ Zvepe xz)Q(]ﬁ(wz)
i=1

The log-derivative trick on its own:

Vop(z;0)
p(x;0)

The reason is simply derivative + chain rule:
1
Vologz = —, (f(g(2))" = f(g(x))g (x)

Could be used to simplify the calculation of Vgp(z;0):

Vo logp(z;0) =

Vop(x;0) = p(x;0)Vglog p(x; 0)
8Reference on log-derivative trick. W

https://andrewcharlesjones.github.io/posts/2020/02/log-derivative/

Wake Sleep 1 21
—

Maximize data log-likelihood with two steps of loss relaxation.

Wake phase: ming Ey, (,x)[log(ps(x|2))]

» Maximize the variational lower bound of log-likelihood, or
minimizing free energy (original goal)

F(0,¢;x) = —log p(x) + KL(gy(z|x)|pe(2]x))

» Correspond to variational M step).

> Get samples from g4(z|x) through inference on hidden
variables.

Y

Wake Sleep I1
—

Sleep phase: ming Ey_ (x|, [log(ps(z[x))], simplified as
ming By, (x) [log(pe(z[x))] (for the ease of optimization).

V¢F(9’ ®; X) =+ vqﬁEqd,(z\x) [10g(pg(Z|X))] +..

includes the high variance term log pg, but could be estimated
with the log-derivative trick:

VEq,[log pg] = / Vg4 logpg = / 4y log pgV ¢ log gy
= Ky, [logpgV g log qy]
estimated by Monte Carlo (log pg(x,z;) can be arbitrarily large):

VgEq, [log pg(z|x)] ~ Ezi~qy log pe(x,2:)V pqs(2i|x)]

22

Wake Sleep 111 23
—

» Minimize a different objective (reversed KLD) wrt ¢ to
ease the optimization:

F'(0, ¢5%) = —logp(x) + KL(pg(2[x)|lgs (z[x))

» Correspond to the variational E step.

» Why changing objective: original objective is suffering from
high variance caused by the gradient of the original KL
term, and therefore it is generally intractable.

» “Dreaming” up samples from py(x|z) through top-down
pass.

» Doing something “wrong” but not “too wrong”.

Y

Variational Inference v.s. Wake Sleep 24

—

Variational Inference

» Distribution g4(z|x) Wake Sleep
» M Step: » Inference model g4(z[x)
ming KL(gs(zx)[lpo(zx) > Wake;
> By, (a1 [Vo log(po(x|2))] ming KL(gy (2]x)||ps(2[x))
> E Step: > By, (alx) [Vo log(pe(x[2))]
ming KL(gg(2[x)]|po (2x)) > Sleep:
> VsEq, (alx) log(po(x|2))] ming KL(pg(z|x)|[g4(z[x))
> High variance, need > Epyzx)[Ve log(gs(z,x))]
variance-reduce in » Low variance
practice » Learning with generated
» Learning with real samples of x.
samples of x. > Two objective, not

> Single objective, guaranteed to converge

guaranteed to converge

Variational autoencoders (VAEs) I 25

—

¢-- YD), 0
0,619 | o] pal

inference model generative model

Figure: Key Ideas: Inference model and Generative model. Prior p(z),
joint distribution py(x,2z) = pg(x|z)p(z). Use variational inference
with an inference model, enjoy similar applicability with wake-sleep

algorithm. [Kingma & Welling, 2014] w

https://arxiv.org/abs/1312.6114

Variational autoencoders (VAEs) II 26

—

Variational lower bound:

5(9, ¢; X) = IEq¢,(z|x) [log Do (Xv Z)] - KL(q¢(Z|X) |]p(z))

Recall that for a variational inference model we suffer from
large variance in sleep / E phase:

Ve F(0,0:%) = -+ + VEq (5x)[log(pe(2[x))] + . ..

This time the variance is reduced via reparameterization
trick. (Alternatives: use control variates as in reinforcement
learning.)

Y

Variational autoencoders (VAEs) I11 27
—

Reparameterization trick in gradient estimation of the inference
model:

1. Assume a trivial noise distribution (e.g. standard
Gaussian): € ~ p(e)

2. Do a deterministic transformation:
2~ go(zlx) = 2= gsle,x)
3. Reparameterized expression e.g.:
VoEy, (@ix) [108(po(x,2))] = Ecvp() [V log pa(x, 24 (€))]

has empirically lower variance of the gradient estimate.

Y

Variational autoencoders (VAEs) IV 28
—

Figure: Celebrity faces generated (Radford 2015). VAEs tend to
generate blurred images due to the mode covering behavior.

Mode-covering behavior has something to do with the KL

divergence: reference.

https://wiseodd.github.io/techblog/2016/12/21/forward-reverse-kl/

Generative Adversarial Nets (GANs) I 29
—

Defining a procedure involving a generator Gy and a
discriminator Dy.

noise distribution

Figure: [Goodfellow et al,. 2014] GAN:
ming maxp Ex, .., (108(D(Xreat))) + Exup. (log(1 — D(G(Xfake))))

Y

https://arxiv.org/abs/1406.2661

Generative Adversarial Nets (GANs) 11 30
—

D (discriminator, output 1 for real data and 0 for fake data) is
trained first and then G in each iteration. While training D we
minimize:

lp = —Ex, . (IOg(D(Xreal))) - Exfake (log(1 — D(G(Xfake))))

and while training G we minimize:
lg =log(1l — D(G(Xfake)))

where X;..q; are sampled from real data X,eq; ~ Pdate(X) and
X fake 1s sampled from a noise distribution X fqre ~ Poise(X)-

Y

Generative Adversarial Nets (GANs) 111
—

Learning goal is to achieve equilibrium of the game, optimal
state:

» Generated distribution is identical to the real distribution.

31

Generative Adversarial Nets (GANs) IV 32
—

Figure: Generated bedrooms (Radford et al., 2016). GANs tend to
generate sharp images but very narrow (focusing on a few areas e.g.

the bed).

Y

Necessity of a Unified View 33
—

Analogy: from Alchemy to modern Chemistry.
» Basic elements are concluded in a unified way;
» Rules are found accordingly;

> No need to try countless times until getting some “Hail
Mary results” with luck.

Paper: On Unifying Deep Generative Models [Z Hu, Z YANG,
R Salakhutdinov, E Xing]

» GANSs: achieve an equilibrium between generator and
discriminator

» VAEs: maximize lower bound of the data likelihood

Y

https://arxiv.org/abs/1706.00550
https://arxiv.org/abs/1706.00550

Unifying the Expressions 34

Is there a way of making DGMs expressions a little bit similar
with each other?

» GAN objective in variational-EM format;

» VAE’s new formulation (and comparision to GAN);
» Linking GAN and VAE to Wake-Sleep.

GAN Objective New Form
—

To model a distribution:
x ~ pp(xly) <= x = Gy(z),z ~ p(z|ly = 0) where

x|y) = Pgq (%) y=0
pe(|y) {pdata(x) y= 1

35

GAN Objective New Form 36
—

Conventional formulation (z ~ ppeise(2)):
i % -y, 0 108(D6(30)] + B 08 (1 — Do)

maxy Lo = Exp,. (x)[108(Dg(X))] + Exngy(z) [log(1 — Dy(x))]
maxg Lo = Exq,(z) [log(Dy(X))]

The new form:

{mans Lo =By (xiy)p(y) 108(a5 (y]%))]
maxg Lo = Ep, xly)p(y) [108(g5 (1 — yx))]

where g4(1 — y[x) can also be denoted as gj(y[x).

Y

GAN in variational-EM Format 37
—

Variational EM

GANs
L0, ¢:%) = Eqg, (s]x) [log(p(x[2))] ;g :
FRLgg(apllp(z)) T Bane loslaely)
Lo=FE, 1 1—
N T U B
> Two objectives
> Single objective > Interpret g4(y|x) as the
> Generative model: py(x|z) generative model
» Inference model: qqg(zfx) > Interpret pe(x‘y) as the
» The reconstruction term inference model
Eq,(zx) [log(po(x|z))] is > Doesn’t exist prior
similar to GANs’ regularization of p(z).
objectives.

Y

GAN: Minimizing KLD 38
—

Recall that in maximizing the variational lower bound:
L0, ¢;x) = By, (a)x)[log(pe(x|2))] + KL(q4(z[x)||p(z))
= log p(x) — KL(qy(2|x)|pe(2|x))

That is, we minimized the KLD from the inference model to the
posterior:

—log p(x) + KL(gy(2[x)||pe(z[x))

GAN: Minimizing KLD 39
—

Starting from an initial point (6o, ¢o), let p(y) be a uniform
prior distribution, and

Po=6, (X) =]Ep(y) [p9:90 (X|y)]

q"(x[y) o< ¢" (yx)po=g, (x)

Lemma (update rule for 6 ?)

VoE s (x|n)p(y) [108(a5— g, (y[X))] ‘9:90

=V (B3 [IKL (po ()l ()] — ISD(po xly = 0)llpo (ol = 1)))|_-

9JSD = Jensen-Shannon divergence, KL = KL divergence. W

GAN: Minimizing KLD 40
—

Lemma (update rule for)

Vg]Epe (x|y)p(y) [IOg(q;:lﬁO (y|X))] ’ 0=0,

=Vo(Ep() [KL(po (x[y)lla" (x[y))] — ISD(po (x|y = 0)||pe(x|y = 1))) ‘H
=vYo
Connection to variational inference:
> See x as latent variables, y as visible;

> pg—g,(x) as prior distribution, ¢"(x|y) as posterior

distribution, pg(x|y) as variational distribution.

» 10

GAN: Minimizing KLD — “sharpness of images’ 41

—

; GANSs: minimizing KLD

Po=g, X1y = 1) = Pagra®) Po=g, (xly = 0) = pg,_, (X)

*Missing mode phenomena of GANs KL (pgy GOl Gl = 0))
* Asymmetry of KLD Pgp®)
«Concentrates pg(x|y = 0) to large modes of = J’”W(X) gy =0 %
q" (xly)
= Pae (x) misses modes of pdata(x) « Large positive contribution to the KLD in the

regions of x space where ¢" (x|y = 0) is small,

* Symmetry of JSD) unless p, (x) is also small
+Does not affect the behavior of mode + = pg,(x) tends to avoid regions where
missing q"(x|ly = 0) is small

Figure: Blue: prior distribution of real data, Green: posterior
distribution of the synthetic data, Red: variational distribution of
synthetic data.

10¥ou won’t pop up unless you have adequate samples. W

VAE New Formulation 42
—

VAE: maximizing the variational lower bound:

L0, 6;%) = By, (x) [Eqy (a1x) 108 Po (x, 2)] — KL(g4(2[x)[|p(2))]

To align VAE with GAN, we introduce the real/fake indicator
y and adversarial discriminator.

Beside x the code / observation / example /etc., and z the
hidden state / latent representation, we introduce y, together
with a perfect discriminator ¢, (y|x).

g« (y = 1|x) = 1 if x is real

¢-(y = 0|x) = 1 if x is generated

and also a generative distribution: !

clg o) = JPexlz) =0
polxiz) {pdata(x) y=1

1 This format is similar to InfoGAN. W

https://arxiv.org/abs/1606.03657

VAE New Formulation 43
—

Also, let the posterior py(z, y|x) po(z, y|x)p(z|y)p(y): 2

Lemma (New Objective of VAE at (6y, ¢o))

L(0,¢;%) =Ep,,,, () [Eq, (210 108 Po (x, 2)] — KL (g (2[x)||p(2))]
=2Ep,, (x) [Eq, (zlx.0)az (vl [l0g Po (X2,)]
— KL(gs (2%,) (yx)[p(2|y)p(y))]
=2E,, (x| — KL(gs(2]%,9)q. (y|x)||p(2, y[x))]

12p(-) are fixed priors. W

VAE New Formulation 44
—

The KLD to minimize for VAE is:

KL(q4(2|%, y)q; (y[x)||pe(2, y|x))

Recall that in the new form of GAN, the KLD to minimize:

KL(ps (x|y)llq" (x]y))

There is a major difference here: GANs KL term does
ming KL(P||Q) and VAEs does ming KL(Q||Py). 3

» GANs: ming KL(P||Q) tends to missing mode, ignoring
regions with small values of pggta;

» VAEs: ming KL(Q||P) tends to cover regions with small
values of pyuta-

I3KLD Asymmetry inspires combination of GANs and VAES.W

Linking VAE to Wake-Sleep 45
—

Recall Wake Sleep: two loss-functions are used.

Wake: Hgn E s (21%)pdata(x) [log(pe(x|2))]

Sleep: m;n Epg (x|z)p(z) [log(Q¢ (Z ‘ X))]

Recall VAEs objective to minimize:

L(0,¢3%) = Ep,.,..x) [Eay (2l 108 o (%, 2)] — KL(g4(2[x)[|p(2))]

VAE only needs the wake phase, does not need the sleep phase,
and thus doesn’t need the reverse-KLD trick. Stick to
minimizing the wake phase KLD w.r.t. 4, ¢.

Y

Linking GAN to Wake-Sleep 46
—

Wake Sleep: two loss-functions are used.

Wake: min By, (z]x)p,,0 () 108 (Po(x2))]

Sleep: m(gn Epg (x|z)p(z) [log(Q¢ (Z‘X))]
Recall GANs objective:

mgx Ly = Ep, (xly)py) [10g(q4(y]x))]

max Lo = Epy (xpy)p(y [108(45(y/x))]

GAN is directly extending sleep phase, only difference is

qo — qp- Stick to minimizing the sleep-phase KLD.

Conclusion of the First Half 47
—

DGMs have a long history, and is a big family.

Unification of the different DGMs is possible & useful.

» GANs and VAEs are essentially minimizing KLD in
opposite directions and extend two phases of classic wake
sleep algorithm, respectively;

» The general formulation is useful for analyzing a broad
class of existing DGM models, and can inspire new models
and algorithms.

Y

Applications

GAN Progress
—

> It is trending because of its outstanding performance.
» Vanilla GAN [Goodfellow et al,. 2014] objective:

ngn JSD(Pyatal | Pyy)

» Note: this expression is symbolic, not executable.

» Unifying version [Hu et al. 2017] objective:

mein KL(P||Q)

48

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1706.00550

Wasserstein GAN (WGAN): Motivation
—

Shortcoming of KLD: for KL(P||Q) if P and @ have neglectable
overlap, then the KLD is degenerated, meaningless. Sometimes
it becomes undefined or infinite, messing up the loss.

In practice: if our data is a low-dimensional manifold of a high
dimensional space, there can be a negligible intersection
between the model’s manifold and the true data manifold.

1 Similar shortcoming applies to JSD. W

49

Wasserstein GAN (WGAN): Motivation 49
—

Shortcoming of KLD: for KL(P||Q) if P and @ have neglectable
overlap, then the KLD is degenerated, meaningless. Sometimes
it becomes undefined or infinite, messing up the loss. '

In practice: if our data is a low-dimensional manifold of a high
dimensional space, there can be a negligible intersection
between the model’s manifold and the true data manifold.

The loss function is re-defined via Wasserstein Distance.
» Well-defined in math, a.k.a Earth Mover’s Distance;

» Minimum transportation cost for making pile of dirt in
shape of one probability distribution to the other.

1 Similar shortcoming applies to JSD. W

Wasserstein GAN (WGAN) 15 50
—

} Wasserstein GAN (WGAN)

« Objective

1
W(pdatar pg) = X ||§|l\11.21(Ex~pdam [D(x)] - Ex~pg [D(0)]

||1D|], < K : K- Lipschitz continuous
» Use gradient-clipping to ensure D has the Lipschitz continuity

Without gradient clipping With gradient clipping

Figure: Lipschitz continuous: intuitively limited in how fast it can
change, previously learned with convex optimization.

15[Arjovsky et al., 2017] W

https://arxiv.org/abs/1701.07875

Progressive GAN 16 51

G Latent Latent Latent
) v
i oa]
| =
; i ————
{ (e
H ——
—————————
1024x1024

R. B. - 8
| iReals i iReals . | Reals
; 1024x1024

D Hi
——
i i ——————
. HH ———

Figure: Ideas: Begin with very low-resolution images and very shallow
G, D. As training goes on, add additional layers to G & D, and use
higher resolution images. By-passing the size bottleneck by not

having to train the whole network at once.

6[Karras et al., 2018]

https://arxiv.org/abs/1710.10196

BigGAN 17 52

GANSs benefit dramatically from scaling.

They put efforts in scaling up GANs.
> 2 — 4 times more parameters to improve expressiveness;
> 8x larger batch size to avoid overfitting;

» Simple architecture changes that improve scalability.

1"[Brock et al., 2018 W

https://arxiv.org/abs/1809.11096

Normalizing Flow (NF): Basic Concepts 53
—

Idea: to amplify / transform an originally very simple model
into something more complex / powerful; to transform a simple
distribution into an arbitrarily complex one.

Method: applying a sequence of invertible transformation
functions. 8

f1(zo) fi(zi—1) fiv1(zi)
® - DL . @

- ~

’ ’ \
’ ’ \
1 1 \
| !] ' | !
\ ! \ ! \ !
\ /' \ ! \ /
\

\ / \
LY ,’ N ,/ \ ,/
See - See__-” S .-

2z ~ po(2o) z; ~ pi(2;) zk ~ Pk (2K)

Figure: Figure from Prof. Xing’s lecture slides, Figure courtesy:
Lilian Weng.

18 ibraries do that all the time, e.g. Uniform — Gaussian. W

Normalizing Flow (NF): Single Transform 54
—

Starting from z ~ p(z), given transformation function f,
generating x = f(z).
» To do inference we need z = f~1(x), thus need f to be
invertible.
» To compute density we have:

60 =)| et 2| = (1)) den 2L

and there are tricks of making the Jacobian determinant

det df easy to compute, e.g. making f— a triangular

matrlx

Y

Normalizing Flow (NF): Sequence 55
—

zo ~ p(2o)
x=1zk = fx o fxk-10-° fi(zo)
inference: z; = f; ' (zi_1)
dZZ 1
dz;

While training, we maximize the log likelihood:

density: p(z;) = p(zi—1)’ det

log p(x) = log p(z —i—Zlog‘det dzi 1‘

Making the Jacobian determinant easy to compute by

Y

choosmg to be triangular matrix.

NF example: GLOW 1 56
—

One step of flow in the Glow model go passes the layers:
P activation normalization;
» invertible 1 x 1 convolutional;
> affine coupling.

Small building block of potentially big architectures.

Not as powerful as GAN, but cheap, easy to compute.

19 Kingma and Dhariwal., 2018] W

https://arxiv.org/abs/1807.03039

Integrating Domain Knowledge into Deep Learning 57

Motivation: Deep Learning has some disadvantages by itself.
» Heavily rely on massive labeled data;
» Uninterpretable;

» Hard to encode human intention and domain knowledge.

Human learning:

» Learn from concrete examples (similar to deep learning
models)

» Learn from abstract knowledge (definitions, logic rules, etc)

Y

Integrating Domain Knowledge into Deep Learning 58

Consider a statistical model x ~ pg(x), it could be conditional
model, generative model, discriminative model, etc.

Consider a constraint function fg(x) € R.

» The higher f4(x) is, the better quality x has w.r.t.
knowledge.

Y

Integrating Domain Knowledge into Deep Learning 59

Image example:
Constraint
Learnable

target true module ¢
pose target
|
Human !
part Structured

consistency
- arser
Generative P |
model py]
source generated
image image y [-

Figure: An example of using real pose as knowledge.

Sentiment classification example:

» “This was a terrific movie, but the director could have done
better.”

» Logical Rules: Sentence S with structure A-but-B =

sentiment of B dominates. w

Integrating Domain Knowledge into Deep Learning 60

One way to impose the constraint is to maximize E,,[fs(x)],
which means, adding a regularization term to the objective:

min £(6) — oy, [f4(x)]

It is difficult to compute E,, [f4(x)]. Because when we compute

the derivative W, we use the log-derivative trick (always

the case when deriving expectation over distribution). In the
end we’ll have a term that is the log probability itself (and
something else) — that term will explode, high variance,
extremely unstable. (Recall: Wake-Sleep’s Sleep phase.)

Y

Integrating Domain Knowledge into Deep Learning 61

A variational approximation 20 to ease the computation of
Ep, [fo(x)] is to use ¢(x) to approximate py(x).

L£(0,q) = KL(g(x)[pa(x)) — AEq[f5(x)]

It introduces variational distribution q:
» Impose constraint fy on ¢;
» Encourage ¢ to stay close to py.
The objective of data-driven and knowledge-driven combination:

rgin L(0) — aL(,q)
7q

20Called a Posterior Regularization [Ganchev et al., 2010]. W

https://www.jmlr.org/papers/volume11/ganchev10a/ganchev10a.pdf

Learning with Constraints 62

—

nelin L(0) —aL(,q)
7q

L£(0,q) = KL(g(x)|pa(x)) — AEq[f5(x)]

One way to learn via EM algorithm:
> E-Step: ¢"(x) = po(x) exp{Ay(x)}/Z

» This approach is known as a soft constraint. Higher value of

Ag, higher probability under q.
> M-Step: ming £(0) — Eqg«[log pg(x)]

Y

Logical Rule Constraints 2! 63

—

Consider a supervised learning: py(y|x) and Input-Target space
(X,Y), with first-order logic rules: (r,\)

» r(X,Y) € [0,1] could be soft;

»)\ is the confidence level of the rule.

Given [rules:
> E-Step: ¢ (yx) = po(x) exp { 2 Am(yIX)}/Z

» Current version of py with all rule constraints.

> M-Step: ming £(0) — Eg+[log pe(y|x)]

Similar efforts were made by Hinton: Knowledge Distillation.

21[Hu et al., 2016] W

http://www.cs.cmu.edu/~epxing/papers/2016/Hu_etal_ACL16.pdf

Knowledge Distillation 22 64

—

Student network: pg(y|x) (difficult to learn)
> Typically only takes labeled data.

Teacher network: ¢*(y|x)
> Auxiliary, variational approximation, etc.

> Designed to be ensemble, take labeled data, but could
possibly take unlabeled data as well.

Match soft predictions (not just 0 or 1) of the teacher network
and student network.

> Train the teachers in one step, train the student to imitate
the outputs of teacher network in another step.

» Will eventually get student closer to some / one / average

of the teachers. w
22[Hinton et al., 2015; Bucilu et al., 2006]

https://arxiv.org/abs/1503.02531
https://www.cs.cornell.edu/~caruana/compression.kdd06.pdf

Rule Knowledge Distillation 23 65

—

Teacher network is rule-regularized. Recall the previous E-Step:
p*(y1%) = po(x)exp { 3 Am(ylx) }/2
!

The results from teacher network are soft, including both py
()

and logic rules constraints: s;’ (n is the sample index, ¢ is the
current iteration).

There is also a ground truth label: y,,. Student output is
o9(xn).

At iteration ¢ (w € [0,1] is a balancing parameter):

N

1
(t+1) _ in — _ (t)
0 arg uin - E (1 = m)l(yn,00(xn)) + 7l(s),’, 09(x1))

n=1
2[Hu et al., 2016] W

http://www.cs.cmu.edu/~epxing/papers/2016/Hu_etal_ACL16.pdf

Rule Knowledge Distillation 66
—

More on learning rules / constraints:
» Teacher / student network structures.

» Learn the confidence value); of each rule. [Hu et al.,
2016b]

» More generally, optimize parameters of the constraint
fe(x). [Hu et al., 2018]

» Teachers can reach beyond the scope of logical rules.
Possible to make the reward function of reinforcement
learning as a type of teaching function.

» From this perspective, reinforcement learning becomes an
instance of knowledge-driven machine learning.
> See keyword: variational reinforcement learning.

Y

http://www.cs.cmu.edu/~epxing/papers/2016/Hu_Luo_Sachan_Nie_Xing_IJCAI16.pdf
http://www.cs.cmu.edu/~epxing/papers/2016/Hu_Luo_Sachan_Nie_Xing_IJCAI16.pdf
https://arxiv.org/pdf/1806.09764.pdf

Takeaways 67

—

Generative Adversarial Networks (GANs)
» Wasserstein GAN: new learning objectives
> Progressive GAN: new training schedule
> BigGAN: scaling up GAN models

Normalizing Flow (NF)
» Chained transformation functions

> Exact latent inference, density evaluation, sampling

Integrating Domain Knowledge into Deep Learning
» Domain knowledge as constraint

» Learning rules / constraints

Y

	Outline
	Introduction
	Deep Generative Models
	Early Forms of DGMs
	DGMs Training Procedure
	Modern DGMs
	A Unified View of DGMs

	Applications
	Generative Adversarial Networks (GANs)
	Normalizing Flow (NF)
	Integrating Domain Knowledge into Deep Learning

