
Deep Generative Models

Zhiping (Patricia) Xiao

University of California, Los Angeles

2021 Winter

Outline 1

Introduction

Deep Generative Models
Early Forms of DGMs
DGMs Training Procedure
Modern DGMs
A Unified View of DGMs

Applications
Generative Adversarial Networks (GANs)
Normalizing Flow (NF)
Integrating Domain Knowledge into Deep Learning

Introduction

q

Motivation 2

This lecture is about a unifying theoretical perspective of
DGMs. The reason why we are interested:

I Trending: most popular research topic nowadays (CVPR,
ICML, NeurIPS, etc.)

I Promising: style transfer/fusion, music/image/text
generations, etc.

Definition 3

Generative vs. Discriminative models:

I P(X,Y) vs. P(Y |X);

I Estimate distribution (G) instead of just boundaries (D);

I etc.

Deep: multiple layers of hidden variables.

Course Materials 4

Prof. Eric Xing’s lecture 12 & 13. 1

I Lecture scribe: 12 & 13

I Lecture slides: 12 & 13

I Lecture record: 12 & 13

Prerequisites:

I Variational Inferences (Lecture 7&8 in Prof. Xing’s lecture,
in our reading group presented by Yewen.)

1www.cs.cmu.edu/ epxing/Class/10708-20/lectures.html

https://www.cs.cmu.edu/~epxing/Class/10708-20/scribe/lec12_scribe.pdf
https://www.cs.cmu.edu/~epxing/Class/10708-20/scribe/lec13_scribe.pdf
https://www.cs.cmu.edu/~epxing/Class/10708-20/lectures/lecture12-DGM1.pdf
https://www.cs.cmu.edu/~epxing/Class/10708-20/lectures/lecture13-DGM2.pdf
https://scs.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=03fa28df-682e-49f9-a0aa-ab41015d0b03
https://scs.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=e6103038-3c50-48ed-b94e-ab41015d2801
https://www.cs.cmu.edu/~epxing/Class/10708-20/lectures.html

Deep Generative Models

q

Sigmoid Belief Nets 2
5

A kind of Hierarchical Bayesian Model. We estimate the hidden
values and the parameters to approximate the observations.

i

j
θij

hidden

hidden

visible

zn
(2)

zn
(1)

xn

Figure: SBNs: lower layers are connect to upper layers via sigmoid
functions. Use θk to denote all parameters connected to xk,n; θi for

that connected to z
(1)
i,n from z

(2)
∗,n. Then:

p(xk,n = 1|θk, z(1)n) = σ(θTk z
(1)
n); p(z

(1)
i,n = 1|θi, z(2)n) = σ(θTi z

(2)
n).

2Neal, 1992

http://www.cs.toronto.edu/~bonner/courses/2016s/csc321/readings/Connectionist%20learning%20of%20belief%20networks.pdf

Helmholtz Machines 3
6

A dual, alternative process that unifies inference and
generative process:

I run generative model on input pθ(X), and also run
inference model on hidden values pφ(h).

I Use the process instead of a global math expression to
define the model.

I inference and generative models may or may not be related.

Xn = Gθ(Xn−1) , Xn−1 = Fφ(Xn)

3Dayan et al.,1995

https://www.cs.toronto.edu/~hinton/absps/helmholtz.pdf

Predictability Minimization 4
7

Defines a training procedure. Not “model” in a rigorous way.

I Using alternative loss-functions. Containing an encoder
network and a predictor network.

I Use the training procedure instead of a global math
expression to define the model.

Suppose the latent representation (code) is y ∈ Rm, yi ∈ [0, 1],
then the predictor minimizes the prediction error on y, while
the encoder maximizes the prediction error (e.g. mean square
error).

4Schmidhuber, Since 1991 (see also: a conclusion on ArXiV)

https://ieeexplore.ieee.org/document/6795705
https://arxiv.org/pdf/1906.04493.pdf

Resurgence of deep generative models I 8

Restricted Boltzmann machines (RBMs) [Smolensky, 1986]

I Equivalent to an infinitely-deep sigmoid network.

Deep belief networks (DBNs) [Hinton et al., 2006]

I Inference in DBNs is problematic due to “explaining away”
(e.g. one observation A, two potential causes B and C,
symptom A makes both B and C become more likely, but
once you pick a cause, then the other’s probability goes
back down 5);

I Hybrid graphical model, some layers directed, some layers
undirected.

https://stanford.edu/~jlmcc/papers/PDP/Volume%201/Chap6_PDP86.pdf
http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf

Resurgence of deep generative models II 9

Deep Boltzmann Machines (DBMs) [Salakhutdinov & Hinton,
2009]

I Undirected model.

Variational autoencoders (VAEs) [Kingma & Welling, 2014]
/ Neural Variational Inference and Learning (NVIL) [Mnih &
Gregor, 2014]

I The first modern actively-used DGMs.

I Old ideas (generative model pθ(x|z) and inference model
qφ(z|x)) but excellent executions, produce very nice results.

I Still, the two models can be very different.

I Trained in a variational way.

http://proceedings.mlr.press/v5/salakhutdinov09a.html
http://proceedings.mlr.press/v5/salakhutdinov09a.html
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1402.0030
https://arxiv.org/abs/1402.0030

Resurgence of deep generative models III 10

Generative adversarial networks (GANs) [Goodfellow et al,.
2014]

I Defining a procedure, again, not really a “model”.
Alternatively train Gθ and Dφ.

noise distribution

real data

fake dataG

D

Figure: GAN:
minG maxD Exreal

(
log(D(xreal))

)
+ Exfake

(
log(1−D(G(xfake)))

)

And countless ideas following them. We have a zoo of such
models.

5Reference slides on “explaining away”.

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-825-techniques-in-artificial-intelligence-sma-5504-fall-2002/lecture-notes/Lecture15FinalPart1.pdf

Synonyms in the Literature 11

Posterior Distribution / Inference model

I Variational approximation

I Recognition model

I Inference network (if parameterized as neural networks)

I Recognition network (if parameterized as neural networks)

I (Probabilistic) encoder

“The Model” (prior + conditional, or joint) / Generative model

I The (data) likelihood model

I Generative network (if parameterized as neural networks)

I Generator

I (Probabilistic) decoder

Training I 12

Training of early forms of DGMs typically uses EM framework.

I via sampling / data augmentation: directly infer hidden
variable, given observations p(z|x)

z = {z1, z2}
znew1 ∼ p(z1|z2,x)

znew2 ∼ p(z2|znew1 ,x)

I variational inference: generator parameters θ, variational
inference model parameters φ, optimizing an variational
lower bound:

log(p(x)) ≥ Eqφ(z|x)[log(pθ(x|z))] + KL(qφ(z|x)||p(z)) := L(θ, φ; x)

max
θ,φ
L(θ, φ; x)

Training II 13

I wake sleep: the loss-functions become different

Wake: min
θ

Eqφ(z|x)[log(pθ(x|z))]

Sleep: min
φ

Epθ(x|z)[log(qφ(z|x))]

Training III 14

θ θ φ

data augmentation variational inference wake sleep
θ φ

Figure: Illustration of the training methods’ differences.

Recap: Variational Inference — Idea 15

Variational: fancy name of “optimization”.

Variational Inference: studying inference problems via
optimization methods.

Challenge: Direct inference on P can be arbitrarily difficult,
often intractable in practice.

I Introduce tractable family of distributions Q;

I Expect P and Q to be close to each other and perform
inference on Q.
I A convenient choice of distance-measuring: KL Divergence

Recap: Variational Inference 16

Consider a generative model pθ(x|z) , and prior p(z); we have
joint distribution:

pθ(x, z) = pθ(x|z)p(z)

Assume variational distribution qφ(z|x);
Objective: Maximize lower bound for log likelihood.

log(p(x)) ≥ Eqφ(z|x)[log(pθ(x|z))] + KL(qφ(z|x)||p(z)) := L(θ, φ; x)

where KL refers to KL Divergence (p, q are distributions):

KL(q||p) =
∑

x

q(x) log
q(x)

p(x)

There are multiple ways of expressing its objectives.

Recap: Variational Inference — More on KLD 17

KL divergence (Kullback-Leibler Divergence) is a way of
comparing two probabilistic distributions. (H: entropy.) 6

KL(q||p) = Eq(x)[log q(x)− log p(x)]

=
∑

x

q(x)
(

log q(x)− log p(x)
)

=
∑

x

q(x) log
q(x)

p(x)

KL(q||p) = Eq(x)[log q(x)− log p(x)]

=
∑

x

q(x)
(

log q(x)− log p(x)
)

=
∑

x

q(x) log q(x)−
∑

x

q(x) log p(x)

= H(q(x))− Eq(x)[log p(x)]

6Reference on Variational Inference. Reference on KL.

https://www.countbayesie.com/blog/2017/5/9/kullback-leibler-divergence-explained
https://ermongroup.github.io/cs228-notes/inference/variational/

Recap: Variational Inference 18

Maximizing the variational lower bound:

L(θ, φ; x) = Eqφ(z|x)[log(pθ(x|z))] + KL(qφ(z|x)||p(z))

= log p(x)−KL(qφ(z|x)||pθ(z|x))

“E-Step”: 7

max
φ
L(θ, φ; x)

“M-Step”:
max
θ
L(θ, φ; x)

Equivalently: minimize free energy.

F(θ, φ; x) = − log p(x) + KL(qφ(z|x)||pθ(z|x))

7To call it EM is misleading but there is a correspondence.

Recap: Log-Derivative Trick I 19

Always used when deriving expectation over distribution. 8

∇θEpθ [qφ] = ∇θ
∫
pθqφ

=

∫
∇θpθqφ (Leibniz rule)

=

∫
pθ
∇θpθ
pθ

qφ

=

∫
pθ∇θ log pθqφ (Log-derivative trick)

= Epθ [qφ∇θ log pθ]

Recap: Log-Derivative Trick II 20

The reason why we can’t stop in the middle is that, ∇θpθ will
not in general be a valid probability density, so we can’t use:

∇θEpθ [qφ] ≈ 1

n

n∑

i=1

∇θpθ(xi)qφ(xi)

The log-derivative trick on its own:

∇θ log p(x; θ) =
∇θp(x; θ)

p(x; θ)

The reason is simply derivative + chain rule:

∇x log x =
1

x
,

(
f(g(x))

)′
= f ′(g(x))g′(x)

Could be used to simplify the calculation of ∇θp(x; θ):

∇θp(x; θ) = p(x; θ)∇θ log p(x; θ)

8Reference on log-derivative trick.

https://andrewcharlesjones.github.io/posts/2020/02/log-derivative/

Wake Sleep I 21

Maximize data log-likelihood with two steps of loss relaxation.

Wake phase: minθ Eqφ(z|x)[log(pθ(x|z))]

I Maximize the variational lower bound of log-likelihood, or
minimizing free energy (original goal)

F(θ, φ; x) = − log p(x) + KL(qφ(z|x)||pθ(z|x))

I Correspond to variational M step).

I Get samples from qφ(z|x) through inference on hidden
variables.

Wake Sleep II 22

Sleep phase: minφ Eqφ(x|z)[log(pθ(z|x))], simplified as
minφ Eqφ(x,z)[log(pθ(z|x))] (for the ease of optimization).

∇φF(θ, φ; x) = · · ·+∇φEqφ(z|x)[log(pθ(z|x))] + . . .

includes the high variance term log pθ, but could be estimated
with the log-derivative trick:

∇φEqφ [log pθ] =

∫
∇φqφ log pθ =

∫
qφ log pθ∇φ log qφ

= Eqφ [log pθ∇φ log qφ]

estimated by Monte Carlo (log pθ(x, zi) can be arbitrarily large):

∇φEqφ [log pθ(z|x)] ≈ Ezi∼qφ [log pθ(x, zi)∇φqφ(zi|x)]

Wake Sleep III 23

I Minimize a different objective (reversed KLD) wrt φ to
ease the optimization:

F ′(θ, φ; x) = − log p(x) + KL(pθ(z|x)||qφ(z|x))

I Correspond to the variational E step.

I Why changing objective: original objective is suffering from
high variance caused by the gradient of the original KL
term, and therefore it is generally intractable.

I “Dreaming” up samples from pθ(x|z) through top-down
pass.

I Doing something “wrong” but not “too wrong”.

Variational Inference v.s. Wake Sleep 24

Variational Inference

I Distribution qφ(z|x)

I M Step:
minθ KL(qφ(z|x)||pθ(z|x))
I Eqφ(z|x)[∇θ log(pθ(x|z))]

I E Step:
minφ KL(qφ(z|x)||pθ(z|x))
I ∇φEqφ(z|x)[log(pθ(x|z))]
I High variance, need

variance-reduce in
practice

I Learning with real
samples of x.

I Single objective,
guaranteed to converge

Wake Sleep

I Inference model qφ(z|x)

I Wake:
minθ KL(qφ(z|x)||pθ(z|x))
I Eqφ(z|x)[∇θ log(pθ(x|z))]

I Sleep:
minφ KL(pθ(z|x)||qφ(z|x))
I Epθ(z,x)[∇φ log(qφ(z,x))]
I Low variance
I Learning with generated

samples of x.

I Two objective, not
guaranteed to converge

Variational autoencoders (VAEs) I 25

θφ

inference model
N

pθ(x|z)

z

x
qφ(z|x)

generative model

Figure: Key Ideas: Inference model and Generative model. Prior p(z),
joint distribution pθ(x, z) = pθ(x|z)p(z). Use variational inference
with an inference model, enjoy similar applicability with wake-sleep
algorithm. [Kingma & Welling, 2014]

https://arxiv.org/abs/1312.6114

Variational autoencoders (VAEs) II 26

Variational lower bound:

L(θ, φ; x) = Eqφ(z|x)[log pθ(x, z)]−KL(qφ(z|x)||p(z))

Recall that for a variational inference model we suffer from
large variance in sleep / E phase:

∇φF(θ, φ; x) = · · ·+∇φEqφ(z|x)[log(pθ(z|x))] + . . .

This time the variance is reduced via reparameterization
trick. (Alternatives: use control variates as in reinforcement
learning.)

Variational autoencoders (VAEs) III 27

Reparameterization trick in gradient estimation of the inference
model:

1. Assume a trivial noise distribution (e.g. standard
Gaussian): ε ∼ p(ε)

2. Do a deterministic transformation:

z ∼ qφ(z|x) ⇐⇒ z = gφ(ε,x)

3. Reparameterized expression e.g.:

∇φEqφ(z|x)[log(pθ(x, z))] = Eε∼p(ε)[∇φ log pθ(x, zφ(ε))]

has empirically lower variance of the gradient estimate.

Variational autoencoders (VAEs) IV 28

Figure: Celebrity faces generated (Radford 2015). VAEs tend to
generate blurred images due to the mode covering behavior.

Mode-covering behavior has something to do with the KL
divergence: reference.

https://wiseodd.github.io/techblog/2016/12/21/forward-reverse-kl/

Generative Adversarial Nets (GANs) I 29

Defining a procedure involving a generator Gθ and a
discriminator Dφ.

noise distribution

real data

fake dataG

D

Figure: [Goodfellow et al,. 2014] GAN:
minG maxD Exreal

(
log(D(xreal))

)
+ Exfake

(
log(1−D(G(xfake)))

)

https://arxiv.org/abs/1406.2661

Generative Adversarial Nets (GANs) II 30

D (discriminator, output 1 for real data and 0 for fake data) is
trained first and then G in each iteration. While training D we
minimize:

`D = −Exreal

(
log(D(xreal))

)
− Exfake

(
log(1−D(G(xfake)))

)

and while training G we minimize:

`G = log(1−D(G(xfake)))

where xreal are sampled from real data xreal ∼ pdata(x) and
xfake is sampled from a noise distribution xfake ∼ pnoise(x).

Generative Adversarial Nets (GANs) III 31

Learning goal is to achieve equilibrium of the game, optimal
state:

I Generated distribution is identical to the real distribution.

I D(x) = 1
2

Generative Adversarial Nets (GANs) IV 32

Figure: Generated bedrooms (Radford et al., 2016). GANs tend to
generate sharp images but very narrow (focusing on a few areas e.g.
the bed).

Necessity of a Unified View 33

Analogy: from Alchemy to modern Chemistry.

I Basic elements are concluded in a unified way;

I Rules are found accordingly;

I No need to try countless times until getting some “Hail
Mary results” with luck.

Paper: On Unifying Deep Generative Models [Z Hu, Z YANG,
R Salakhutdinov, E Xing]

I GANs: achieve an equilibrium between generator and
discriminator

I VAEs: maximize lower bound of the data likelihood

https://arxiv.org/abs/1706.00550
https://arxiv.org/abs/1706.00550

Unifying the Expressions 34

Is there a way of making DGMs expressions a little bit similar
with each other?

I GAN objective in variational-EM format;

I VAE’s new formulation (and comparision to GAN);

I Linking GAN and VAE to Wake-Sleep.

GAN Objective New Form 35

To model a distribution:
x ∼ pθ(x|y) ⇐⇒ x = Gθ(z), z ∼ p(z|y = 0) where

pθ(x|y) =

{
pgθ(x) y = 0

pdata(x) y = 1

GAN Objective New Form 36

Conventional formulation (z ∼ pnoise(z)):

min
θ

max
φ

Ex∼pdata(x)[log(Dφ(x))] + Ex∼Gθ(z)[log(1−Dφ(x))]

{
maxφ Lφ = Ex∼pdata(x)[log(Dφ(x))] + Ex∼Gθ(z)[log(1−Dφ(x))]

maxθ Lθ = Ex∼Gθ(z)[log(Dφ(x))]

The new form:
{

maxφ Lφ = Epθ(x|y)p(y)[log(qφ(y|x))]

maxθ Lθ = Epθ(x|y)p(y)[log(qφ(1− y|x))]

where qφ(1− y|x) can also be denoted as qrφ(y|x).

GAN in variational-EM Format 37

Variational EM

L(θ, φ; x) = Eqφ(z|x)[log(pθ(x|z))]

+ KL(qφ(z|x)||p(z))

max
θ
L(θ, φ; x) , max

φ
L(θ, φ; x)

I Single objective

I Generative model: pθ(x|z)

I Inference model: qφ(z|x)

I The reconstruction term
Eqφ(z|x)[log(pθ(x|z))] is
similar to GANs’
objectives.

GANs

max
φ
Lφ = Epθ(x|y)p(y)[log(qφ(y|x))]

max
θ
Lθ = Epθ(x|y)p(y)[log(qφ(1− y|x))]

I Two objectives

I Interpret qφ(y|x) as the
generative model

I Interpret pθ(x|y) as the
inference model

I Doesn’t exist prior
regularization of p(z).

GAN: Minimizing KLD 38

Recall that in maximizing the variational lower bound:

L(θ, φ; x) = Eqφ(z|x)[log(pθ(x|z))] + KL(qφ(z|x)||p(z))

= log p(x)−KL(qφ(z|x)||pθ(z|x))

That is, we minimized the KLD from the inference model to the
posterior:

− log p(x) + KL(qφ(z|x)||pθ(z|x))

GAN: Minimizing KLD 39

Starting from an initial point (θ0, φ0), let p(y) be a uniform
prior distribution, and

pθ=θ0(x) = Ep(y)[pθ=θ0(x|y)]

qr(x|y) ∝ qr(y|x)pθ=θ0(x)

Lemma (update rule for θ 9)

∇θEpθ(x|y)p(y)[log(qrφ=φ0
(y|x))]

∣∣∣
θ=θ0

=∇θ
(
Ep(y)[KL(pθ(x|y)||qr(x|y))]− JSD(pθ(x|y = 0)||pθ(x|y = 1))

)∣∣∣
θ=θ0

9JSD = Jensen-Shannon divergence, KL = KL divergence.

GAN: Minimizing KLD 40

Lemma (update rule for θ)

∇θEpθ(x|y)p(y)[log(qrφ=φ0
(y|x))]

∣∣∣
θ=θ0

=∇θ
(
Ep(y)[KL(pθ(x|y)||qr(x|y))]− JSD(pθ(x|y = 0)||pθ(x|y = 1))

)∣∣∣
θ=θ0

Connection to variational inference:

I See x as latent variables, y as visible;

I pθ=θ0(x) as prior distribution, qr(x|y) as posterior
distribution, pθ(x|y) as variational distribution.

GAN: Minimizing KLD — “sharpness of images” 10
41

•Lemma 1

•Missing mode phenomena of GANs
•Asymmetry of KLD
•Concentrates !" # $ = 0 to large modes of
'(# $

⇒ !*+ # misses modes of !,-.-(#)
•Symmetry of JSD
•Does not affect the behavior of mode
missing

KL !*+(3)||'(3 $ = 0

= 5!*+ 3 log !*+ 3
'(3 $ = 0 93

• Large positive contribution to the KLD in the
regions of 3 space where '(3 $ = 0 is small,
unless !*+ 3 is also small

• ⇒ !*+ 3 tends to avoid regions where
'(3 $ = 0 is small

GANs: minimizing KLD

Figure 2: One optimization step of the parameter ✓ through Eq.(7) at point ✓0. The posterior
qr(x|y) is a mixture of p✓0(x|y = 0) (blue) and p✓0(x|y = 1) (red in the left panel) with the
mixing weights induced from qr

�0
(y|x). Minimizing the KL divergence of Eq.(7) w.r.t ✓ drives

p✓(x|y = 0) towards the respective mixture qr(x|y = 0) (green), resulting in a new state where
p✓new(x|y = 0) = pnew

g (x) gets closer to p✓0(x|y = 1) = pdata(x). Due to the asymmetry of
KL divergence, pnew

g (x) missed the smaller mode of the mixture qr(x|y = 0) which is a mode of
pdata(x).

where the prior p(y) is uniform as is widely set, resulting in the constant scale factor 1/2. Note that
here the generator is trained using the unsaturated objective [16] which is commonly used in practice.

max� L� = Ep✓(x|y=0)p(y=0) [log q�(y = 0|x)] + Ep✓(x|y=1)p(y=1) [log q�(y = 1|x)]

=
1

2
Ex=G✓(z),z⇠p(z|y=0) [log(1 � D�(x))] +

1

2
Ex=G✓(z),z⇠p(z|y=1) [log D�(x)]

(6)

We now take a closer look at the form of Eq.(3) which is essentially reconstructing the real/fake
indicator y (or its reverse 1 � y) conditioned on x. Further, for each optimization step of p✓(x|y) at
point (✓0,�0) in the parameter space, we have

Lemma 1 Let p(y) be the uniform distribution. Let p✓0(x) = Ep(y)[p✓0(x|y)], and qr(x|y) /
qr
�0

(y|x)p✓0(x). Therefore, the updates of ✓ at ✓0 have

r✓

h
� Ep✓(x|y)p(y)

⇥
log qr

�0
(y|x)

⇤ i���
✓=✓0

=

r✓

h
Ep(y) [KL (p✓(x|y)kqr(x|y))] � JSD (p✓(x|y = 0)kp✓(x|y = 1))

i���
✓=✓0

,
(7)

where KL(·k·) and JSD(·k·) are the KL and Jensen-Shannon Divergences, respectively.

We provide the proof in the supplement materials. Eq.(7) offers several insights into the generator
learning in GANs.

• Resemblance to variational inference. If we treat y as visible and x as latent (as in ADA), it is
straightforward to see the connections to the variational inference algorithm where qr(x|y) plays
the role of the posterior, p✓0(x) the prior, and p✓(x|y) the variational distribution that approximates
the posterior. Optimizing the generator G✓ is equivalent to minimizing the KL divergence between
the variational distribution and the posterior, minus a JSD between the distributions pg✓

(x) and
pdata(x). The Bayesian interpretation further reveals the connections to VAEs, as we discuss in
the next section.

• Training dynamics. By definition, p✓0(x) = (pg✓0
(x)+pdata(x))/2 is a mixture of pg✓0

(x) and
pdata(x) with uniform mixing weights, and the “posterior” qr(x|y) smooths p✓0(x) by combining
the uncertainty of discriminator qr

�0
(y|x). Thus, minimizing the KL divergence between p✓(x|y)

and qr(x|y) in effect drives pg✓
(x) (i.e., p✓(x|y = 0)) to a mixture of pg✓0

(x) and pdata(x).
Since pdata(x) is fixed, pg✓

(x) gets closer to pdata(x). Figure 2 illustrates the training dynamics
schematically.

• Reasons of the missing mode issue. The negative JSD term is due to the introduction of the
“prior” p✓0(x) at current point ✓0. As JSD is symmetric, the missing mode phenomena widely
observed in GAN generator [37, 6] is explained by the asymmetry of the KL divergence which
tends to concentrate p✓(x|y) to large modes of qr(x|y) and ignore smaller ones. See Figure 2 for
the example.

5

!"7"# $ % = 1 = !()*)($) !"7"# $ % = 0 = !./8/# ($)

01($|% = 0) !"7"345 $ % = 0 = !./8/345	($)

$$
missed	mode

© Eric Xing @ CMU, 2005-2020 46

Figure: Blue: prior distribution of real data, Green: posterior
distribution of the synthetic data, Red: variational distribution of
synthetic data.

10You won’t pop up unless you have adequate samples.

VAE New Formulation 42

VAE: maximizing the variational lower bound:

L(θ, φ; x) = Epdata(x)
[
Eqφ(z|x)[log pθ(x, z)]−KL(qφ(z|x)||p(z))

]

To align VAE with GAN, we introduce the real/fake indicator
y and adversarial discriminator.

Beside x the code / observation / example /etc., and z the
hidden state / latent representation, we introduce y, together
with a perfect discriminator q∗(y|x).

q∗(y = 1|x) = 1 if x is real

q∗(y = 0|x) = 1 if x is generated

and also a generative distribution: 11

pθ(x|z, y) =

{
pθ(x|z) y = 0

pdata(x) y = 1

11This format is similar to InfoGAN.

https://arxiv.org/abs/1606.03657

VAE New Formulation 43

Also, let the posterior pθ(z, y|x) ∝ pθ(z, y|x)p(z|y)p(y): 12

Lemma (New Objective of VAE at (θ0, φ0))

L(θ, φ; x) =Epdata(x)
[
Eqφ(z|x)[log pθ(x, z)]−KL(qφ(z|x)||p(z))

]

=2Epθ0 (x)
[
Eqφ(z|x,y)qr∗(y|x)[log pθ(x|z, y)]

−KL(qφ(z|x, y)qr∗(y|x)||p(z|y)p(y))
]

=2Epθ0 (x)
[
−KL(qφ(z|x, y)qr∗(y|x)||p(z, y|x))

]

12p(·) are fixed priors.

VAE New Formulation 44

The KLD to minimize for VAE is:

KL(qφ(z|x, y)qr∗(y|x)||pθ(z, y|x))

Recall that in the new form of GAN, the KLD to minimize:

KL(pθ(x|y)||qr(x|y))

There is a major difference here: GANs KL term does
minθ KL(Pθ||Q) and VAEs does minθ KL(Q||Pθ). 13

I GANs: minθ KL(Pθ||Q) tends to missing mode, ignoring
regions with small values of pdata;

I VAEs: minθ KL(Q||Pθ) tends to cover regions with small
values of pdata.

13KLD Asymmetry inspires combination of GANs and VAEs.

Linking VAE to Wake-Sleep 45

Recall Wake Sleep: two loss-functions are used.

Wake: min
θ

Eqφ(z|x)pdata(x)[log(pθ(x|z))]

Sleep: min
φ

Epθ(x|z)p(z)[log(qφ(z|x))]

Recall VAEs objective to minimize:

L(θ, φ; x) = Epdata(x)

[
Eqφ(z|x)[log pθ(x, z)]−KL(qφ(z|x)||p(z))

]

VAE only needs the wake phase, does not need the sleep phase,
and thus doesn’t need the reverse-KLD trick. Stick to
minimizing the wake phase KLD w.r.t. θ, φ.

Linking GAN to Wake-Sleep 46

Wake Sleep: two loss-functions are used.

Wake: min
θ

Eqφ(z|x)pdata(x)[log(pθ(x|z))]

Sleep: min
φ

Epθ(x|z)p(z)[log(qφ(z|x))]

Recall GANs objective:

max
φ
Lφ = Epθ(x|y)p(y)[log(qφ(y|x))]

max
θ
Lθ = Epθ(x|y)p(y)[log(qrφ(y|x))]

GAN is directly extending sleep phase, only difference is
qθ → qrθ . Stick to minimizing the sleep-phase KLD.

Conclusion of the First Half 47

DGMs have a long history, and is a big family.

Unification of the different DGMs is possible & useful.

I GANs and VAEs are essentially minimizing KLD in
opposite directions and extend two phases of classic wake
sleep algorithm, respectively;

I The general formulation is useful for analyzing a broad
class of existing DGM models, and can inspire new models
and algorithms.

Applications

6

GAN Progress 48

I It is trending because of its outstanding performance.

I Vanilla GAN [Goodfellow et al,. 2014] objective:

min
θ

JSD(Pdata||Pgθ)
I Note: this expression is symbolic, not executable.

I Unifying version [Hu et al. 2017] objective:

min
θ

KL(Pθ||Q)

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1706.00550

Wasserstein GAN (WGAN): Motivation 49

Shortcoming of KLD: for KL(P ||Q) if P and Q have neglectable
overlap, then the KLD is degenerated, meaningless. Sometimes
it becomes undefined or infinite, messing up the loss. 14

In practice: if our data is a low-dimensional manifold of a high
dimensional space, there can be a negligible intersection
between the model’s manifold and the true data manifold.

The loss function is re-defined via Wasserstein Distance.

I Well-defined in math, a.k.a Earth Mover’s Distance;

I Minimum transportation cost for making pile of dirt in
shape of one probability distribution to the other.

14Similar shortcoming applies to JSD.

Wasserstein GAN (WGAN): Motivation 49

Shortcoming of KLD: for KL(P ||Q) if P and Q have neglectable
overlap, then the KLD is degenerated, meaningless. Sometimes
it becomes undefined or infinite, messing up the loss. 14

In practice: if our data is a low-dimensional manifold of a high
dimensional space, there can be a negligible intersection
between the model’s manifold and the true data manifold.

The loss function is re-defined via Wasserstein Distance.

I Well-defined in math, a.k.a Earth Mover’s Distance;

I Minimum transportation cost for making pile of dirt in
shape of one probability distribution to the other.

14Similar shortcoming applies to JSD.

Wasserstein GAN (WGAN) 15
50

Wasserstein GAN (WGAN)

● Objective

© Eric Xing @ CMU, 2005-2020 10

! "#$%$, "' = 1
* sup

||/||012
E4∼67898 : ; − E4∼6=[:(;)]

• ||:||B ≤ * : K- Lipschitz continuous
• Use gradient-clipping to ensure : has the Lipschitz continuity

Figure: Lipschitz continuous: intuitively limited in how fast it can
change, previously learned with convex optimization.

15[Arjovsky et al., 2017]

https://arxiv.org/abs/1701.07875

Progressive GAN 16
51

Figure: Ideas: Begin with very low-resolution images and very shallow
G, D. As training goes on, add additional layers to G & D, and use
higher resolution images. By-passing the size bottleneck by not
having to train the whole network at once.

16[Karras et al., 2018]

https://arxiv.org/abs/1710.10196

BigGAN 17
52

GANs benefit dramatically from scaling.

They put efforts in scaling up GANs.

I 2− 4 times more parameters to improve expressiveness;

I 8× larger batch size to avoid overfitting;

I Simple architecture changes that improve scalability.

17[Brock et al., 2018]

https://arxiv.org/abs/1809.11096

Normalizing Flow (NF): Basic Concepts 53

Idea: to amplify / transform an originally very simple model
into something more complex / powerful; to transform a simple
distribution into an arbitrarily complex one.

Method: applying a sequence of invertible transformation
functions. 18

Figure: Figure from Prof. Xing’s lecture slides, Figure courtesy:
Lilian Weng.

18Libraries do that all the time, e.g. Uniform → Gaussian.

Normalizing Flow (NF): Single Transform 54

Starting from z ∼ p(z), given transformation function f ,
generating x = f(z).

I To do inference we need z = f−1(x), thus need f to be
invertible.

I To compute density we have:

p(x) = p(z)
∣∣∣det

dz

dx

∣∣∣ = p(f−1(x))
∣∣∣ det

df−1

dx

∣∣∣

and there are tricks of making the Jacobian determinant

det df−1

dx easy to compute, e.g. making df−1

dx a triangular
matrix.

Normalizing Flow (NF): Sequence 55

z0 ∼ p(z0)

x = zK = fK ◦ fK−1 ◦ · · · ◦ f1(z0)

inference: zi = f−1
i (zi−1)

density: p(zi) = p(zi−1)
∣∣∣ det

dzi−1

dzi

∣∣∣

While training, we maximize the log likelihood:

log p(x) = log p(z0) +

K∑

i=1

log
∣∣∣ det

dzi−1

dzi

∣∣∣

Making the Jacobian determinant easy to compute by

choosing
df−1
i

dzi
to be triangular matrix.

NF example: GLOW 19
56

One step of flow in the Glow model go passes the layers:

I activation normalization;

I invertible 1× 1 convolutional;

I affine coupling.

Small building block of potentially big architectures.

Not as powerful as GAN, but cheap, easy to compute.

19[Kingma and Dhariwal., 2018]

https://arxiv.org/abs/1807.03039

Integrating Domain Knowledge into Deep Learning 57

Motivation: Deep Learning has some disadvantages by itself.

I Heavily rely on massive labeled data;

I Uninterpretable;

I Hard to encode human intention and domain knowledge.

Human learning:

I Learn from concrete examples (similar to deep learning
models)

I Learn from abstract knowledge (definitions, logic rules, etc)

Integrating Domain Knowledge into Deep Learning 58

Consider a statistical model x ∼ pθ(x), it could be conditional
model, generative model, discriminative model, etc.

Consider a constraint function fφ(x) ∈ R.

I The higher fφ(x) is, the better quality x has w.r.t.
knowledge.

Integrating Domain Knowledge into Deep Learning 59

Image example:

Figure: An example of using real pose as knowledge.

Sentiment classification example:

I “This was a terrific movie, but the director could have done
better.”

I Logical Rules: Sentence S with structure A-but-B ⇒
sentiment of B dominates.

Integrating Domain Knowledge into Deep Learning 60

One way to impose the constraint is to maximize Epθ [fφ(x)],
which means, adding a regularization term to the objective:

min
θ
L(θ)− αEpθ [fφ(x)]

It is difficult to compute Epθ [fφ(x)]. Because when we compute

the derivative
dEpθ [fφ(x)]

dθ , we use the log-derivative trick (always
the case when deriving expectation over distribution). In the
end we’ll have a term that is the log probability itself (and
something else) — that term will explode, high variance,
extremely unstable. (Recall: Wake-Sleep’s Sleep phase.)

Integrating Domain Knowledge into Deep Learning 61

A variational approximation 20 to ease the computation of
Epθ [fφ(x)] is to use q(x) to approximate pθ(x).

L(θ, q) = KL(q(x)||pθ(x))− λEq[fφ(x)]

It introduces variational distribution q:

I Impose constraint fφ on q;

I Encourage q to stay close to pθ.

The objective of data-driven and knowledge-driven combination:

min
θ,q
L(θ)− αL(θ, q)

20Called a Posterior Regularization [Ganchev et al., 2010].

https://www.jmlr.org/papers/volume11/ganchev10a/ganchev10a.pdf

Learning with Constraints 62

min
θ,q
L(θ)− αL(θ, q)

L(θ, q) = KL(q(x)||pθ(x))− λEq[fφ(x)]

One way to learn via EM algorithm:

I E-Step: q∗(x) = pθ(x) exp{λφ(x)}/Z
I This approach is known as a soft constraint. Higher value of

λφ, higher probability under q.

I M-Step: minθ L(θ)− Eq∗ [log pθ(x)]

Logical Rule Constraints 21
63

Consider a supervised learning: pθ(y|x) and Input-Target space
(X,Y), with first-order logic rules: (r, λ)

I r(X,Y) ∈ [0, 1] could be soft;

I λ is the confidence level of the rule.

Given l rules:

I E-Step: q∗(y|x) = pθ(x) exp
{∑

l λlrl(y|x)
}
/Z

I Current version of pθ with all rule constraints.

I M-Step: minθ L(θ)− Eq∗ [log pθ(y|x)]

Similar efforts were made by Hinton: Knowledge Distillation.

21[Hu et al., 2016]

http://www.cs.cmu.edu/~epxing/papers/2016/Hu_etal_ACL16.pdf

Knowledge Distillation 22
64

Student network: pθ(y|x) (difficult to learn)

I Typically only takes labeled data.

Teacher network: q∗(y|x)

I Auxiliary, variational approximation, etc.

I Designed to be ensemble, take labeled data, but could
possibly take unlabeled data as well.

Match soft predictions (not just 0 or 1) of the teacher network
and student network.

I Train the teachers in one step, train the student to imitate
the outputs of teacher network in another step.

I Will eventually get student closer to some / one / average
of the teachers.

22[Hinton et al., 2015; Bucilu et al., 2006]

https://arxiv.org/abs/1503.02531
https://www.cs.cornell.edu/~caruana/compression.kdd06.pdf

Rule Knowledge Distillation 23
65

Teacher network is rule-regularized. Recall the previous E-Step:

p∗(y|x) = pθ(x) exp
{∑

l

λlrl(y|x)
}
/Z

The results from teacher network are soft, including both pθ
and logic rules constraints: s

(t)
n (n is the sample index, t is the

current iteration).

There is also a ground truth label: yn. Student output is
σθ(xn).

At iteration t (π ∈ [0, 1] is a balancing parameter):

θ(t+1) = arg min
θ∈Θ

1

N

N∑

n=1

(1− π)`(yn, σθ(xn)) + π`(s(t)
n , σθ(xn))

23[Hu et al., 2016]

http://www.cs.cmu.edu/~epxing/papers/2016/Hu_etal_ACL16.pdf

Rule Knowledge Distillation 66

More on learning rules / constraints:

I Teacher / student network structures.

I Learn the confidence value λl of each rule. [Hu et al.,
2016b]

I More generally, optimize parameters of the constraint
fφ(x). [Hu et al., 2018]

I Teachers can reach beyond the scope of logical rules.
Possible to make the reward function of reinforcement
learning as a type of teaching function.
I From this perspective, reinforcement learning becomes an

instance of knowledge-driven machine learning.
I See keyword: variational reinforcement learning.

http://www.cs.cmu.edu/~epxing/papers/2016/Hu_Luo_Sachan_Nie_Xing_IJCAI16.pdf
http://www.cs.cmu.edu/~epxing/papers/2016/Hu_Luo_Sachan_Nie_Xing_IJCAI16.pdf
https://arxiv.org/pdf/1806.09764.pdf

Takeaways 67

Generative Adversarial Networks (GANs)

I Wasserstein GAN: new learning objectives

I Progressive GAN: new training schedule

I BigGAN: scaling up GAN models

Normalizing Flow (NF)

I Chained transformation functions

I Exact latent inference, density evaluation, sampling

Integrating Domain Knowledge into Deep Learning

I Domain knowledge as constraint

I Learning rules / constraints

	Outline
	Introduction
	Deep Generative Models
	Early Forms of DGMs
	DGMs Training Procedure
	Modern DGMs
	A Unified View of DGMs

	Applications
	Generative Adversarial Networks (GANs)
	Normalizing Flow (NF)
	Integrating Domain Knowledge into Deep Learning

