
Dynamic Graph Representation Learning

Zhiping (Patricia) Xiao

University of California, Los Angeles

Outline 2

Paper References

Dynamic Graph Embedding
Motivation
Self-Attention Mechanism

The Works in Details
Overview
DyRep
DySAT
DyGNN
TGAT
Conclusion

Paper References

q

Paper List 4

Model Name Paper Code

DyRep DyRep: Learning Representations
over Dynamic Graphs (ICLR’19)

unofficial
code

DySAT DySAT: Deep Neural Repre-
sentation Learning on Dynamic
Graphs via Self-Attention Networks
(WSDM’20)

on
Github

DyGNN Streaming Graph Neural Networks
(SIGIR’20)

(not yet
ready)

TGAT Inductive Representation Learning
on Temporal Graphs (ICLR’20)

on
Github

https://openreview.net/forum?id=HyePrhR5KX
https://openreview.net/forum?id=HyePrhR5KX
https://github.com/uoguelph-mlrg/LDG
https://github.com/uoguelph-mlrg/LDG
https://dl.acm.org/doi/pdf/10.1145/3336191.3371845
https://dl.acm.org/doi/pdf/10.1145/3336191.3371845
https://dl.acm.org/doi/pdf/10.1145/3336191.3371845
https://github.com/aravindsankar28/DySAT
https://github.com/aravindsankar28/DySAT
https://dl.acm.org/doi/pdf/10.1145/3397271.3401092
https://github.com/alge24/dygnn
https://github.com/alge24/dygnn
https://openreview.net/forum?id=rJeW1yHYwH
https://openreview.net/forum?id=rJeW1yHYwH
https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-temporal-graphs
https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-temporal-graphs

Other Papers I 5

I Based on discrete screenshot:
I DynamicGEM (DynGEM: Deep Embedding Method for

Dynamic Graphs, IJCAI’17): adopted Net2WiderNet and
Net2DeeperNet approaches (Gt = (V t, Et), t ∈ {1, 2, . . . , T})
(code on Github)

I DynamicTriad (Dynamic Network Embedding by Modeling
Triadic Closure Process, AAAI’18): based on Triadic
closure process etc. (Gt = (V,Et,W t), t ∈ {1, 2, . . . , T})
(code on Github)

https://arxiv.org/abs/1805.11273
https://arxiv.org/abs/1805.11273
https://github.com/palash1992/DynamicGEM
http://yangy.org/works/dynamictriad/dynamic_triad.pdf
http://yangy.org/works/dynamictriad/dynamic_triad.pdf
https://github.com/luckiezhou/DynamicTriad

Other Papers II 6

I Based on continuous interaction:
I HTNE (Embedding Temporal Network via Neighborhood

Formation, KDD’18): using Hawkes process to model
neighborhood formation (event). (G = (V,E,A))

I CTDNE (Continuous-Time Dynamic Network Embeddings,
WWW’18): using Temporal Random Walk to select edges.
(G = (V,ET , T)) (code on Github)

I NetWalk (NetWalk: A Flexible Deep Embedding Approach
for Anomaly Detection in Dynamic Networks, KDD’18):
encoding network streams. (G(t) = (V (t), E(t)))

https://dl.acm.org/doi/10.1145/3219819.3220054
https://dl.acm.org/doi/10.1145/3219819.3220054
https://dl.acm.org/doi/fullHtml/10.1145/3184558.3191526
https://dl.acm.org/doi/fullHtml/10.1145/3184558.3191526
https://github.com/LogicJake/CTDNE
https://dl.acm.org/doi/10.1145/3219819.3220024
https://dl.acm.org/doi/10.1145/3219819.3220024

Dynamic Graph Embedding

q

Problem & Challenges 8

Problem: Learning dynamic node representations.

Challenges:

I Time-varying graph structures: links and node can emerge
and disappear, communities are changing all the time.
I requires the node representations capture both structural

proximity (as in static cases) and their temporal
evolution.

I Time intervals of events are uneven.

I Causes of the change: can come from different aspects, e.g.
in co-authorship network, research community & career
stage perspectives.
I requires modeling multi-faceted variations.

Dynamic Graph 9

Static graphs are often defined as:

G = (V, E)

However, there isn’t an unified way of defining the dynamic
graphs.

Self-Attention: An Important Preliminary I 10

Reference: Attention Is All You Need (NeurIPS’17)

An attention mechanism has a set of keys and a set of
values; it receives a sets of queries.

I (key, value) are paired up, one key matched to one value.

I queries compared to keys, seek for the corresponding
values. (e.g. dictionary)

Does not require an exact match; estimate the strength of the
query-key match (e.g., cosine similarity)

Assumption: more similar keys provide more reliable values.

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Self-Attention: An Important Preliminary II 11

Idea:

1. Compute the similarities between each query and all of the
keys.

2. Compute a weighted average of the corresponding values,
as the result.

Normally we use dot-product attention, say,

Att(Q,K, V) = softmax

(
QKT

√
dk

)
V .

When the key, the value, the query are exactly the same,
K = Q = V, the attention is “self-attention”.

Self-Attention: An Important Preliminary III 12

In practice we want more flexible self-attention.

We want different dimensions of a vector to have different
importance when calculating the attention.

For example, we can apply the linear transformation

K = XWK , Q = XWQ , V = XWV ,

to the key, query and value of a self-attention mechanism.

Free parameters WK,WQ,WV bring a lot of randomness to
the attention mechanism. Normally, we want to simultaneously
try multiple sets of weights. That makes a “multi-head
self-attention”.

Self-Attention: An Important Preliminary IV 13

Given h sets of weights (which constitute h heads), we write

K1 = XWK1 , Q1 = XWQ1 , V1 = XWV1 ,

K2 = XWK2 , Q2 = XWQ2 , V2 = XWV2 ,

...

Kh = XWKh
, Qh = XWQh

, Vh = XWVh
,

and we obtain h sets of results. h is called the “head
number”, and each set of result comes from a head.

Using the h results together, we can improve the reliability of
the self-attention mechanism (e.g., by taking an average).

The Works in Details

6

Overview of the Models 15

Model time steps directed relation types

DyRep Continuous No Homogeneous (*)
DySAT Discrete No Homogeneous
DyGNN Discrete Yes Homogeneous
TGAT Continuous Yes Homogeneous

DyRep: Problem Definition 16

Two kinds of events: (1) association (2) communication.

Gt = (V, E t)

is the denotation of undirected graph G at time t ∈ [t0, T]. An
event (u, v, t, k) has u, k being the involved nodes, t ∈ R+ be
the time and k = {0, 1} be the event type (0 for association, 1
for communication). The stream of event-observations are
(evolution of graph):

O = {(u, v, t, k)p}Pp=1

Embedding of node v at time t is denoted as zv(t) ∈ Rd. zv(t)
represents the most recently updated embedding of node v just
before t.
Idea: learn functions to compute node embeddings.

DyRep: Problem Definition 17

Examples of the two kinds of events:

I association: being academic friends

I communication: meeting at a conference

DyRep: the function modeling an event 18

Given an event p = (u, v, t, k), the conditional intensity function
λu,vk is defined as:

λu,vk (t) = fk
(
gu,vk (t)

)
where t signifies the time point just before current event, and

gu,vk (t) = ωT
k [zu(t); zv(t)]

is a function of node representations learned through GNN.

fk(x) = ψk log(1 + exp(x/ψk))

ψk > 0 is scalar time-scale parameter to learn, corresponding to
the rate of events. ωk is also a parameter to learn.

DyRep: fk(x) 19

Figure: The plot of fk(x)-x.

DyRep: the GNN-like component 20

zv(tp) = σ
(

Wstructhu
struct(tp)︸ ︷︷ ︸

Localized Embedding Propagation

+ Wreczv(t
v
p)︸ ︷︷ ︸

Self-Propagation

+ Wt(tp − tvp)︸ ︷︷ ︸
Exogenous Drive

)
where hu

struct(tp) ∈ Rd is obtained from aggregating node u’s
neighbors, Wstruct,Wrec ∈ Rd×d, Wt ∈ Rd.

It also inherits the GAT-style multi-head attention.

DyRep: Temporal Point Process based Self-Attention21

Figure: DyRep computes the temporally evolving attention based on
events. q is an attention coefficient function, parameterized by S,
which is computed using the intensity of events between connected
nodes.

DyRep: learning algorithm 22

DyRep: how to learn 23

This model obtains two set of parameters to be updated:

I A(t) ∈ Rn×n, the adjacency matrix of Gt. Auv(t) ∈ {0, 1}.
Updated only in association events.

I S(t) ∈ Rn×n, the stochastic matrix, denoting the likelihood
of communication between each pair of nodes.
Suv(t) ∈ [0, 1]. Updated according to λu,vk (t).

L = −
P∑

p=1

log
(
λp(t) +

∫ T

0
Λ(τ)dτ

)
where λp(t) = λ

up,vp
kp

(t), and to represent the total survival

probability for un-happened events we use: 1

Λ(τ) =

n∑
u=1

n∑
v=1

∑
k∈{0,1}

λu,vk (τ)

1In practice, mini-batches are applied (see their Appendix).

DyRep: Experiments 24

DyRep experiments focus on the dynamic feature of the model.

I Dynamic Link Prediction: given v, k, t fixed, which is
the most likely u?

fu,vk (t) = λu,vk (t) exp
(∫ t

t
λ(s)ds

)
is the conditional density used to find the most likely node,
where t is the time of the most recent event on u or v.

I Event Time Prediction: what is the next time point
when a particular type of event occur?

t̂ =

∫ ∞
t

tfu,vk (t)dt

DySAT: Problem Definition 25

A dynamic graph G is defined as a series of observed static
graph snapshots:

G = {G1,G2, . . . ,GT }

where each snapshot Gt is defined as:

Gt = (V, E t)

it is a weighted undirected graph with a shared node set V.
The corresponding weighted adjacency matrix at time t is At.

Idea: to learn etv ∈ Rd, the node representations, preserving (1)
the local graph structures centered at v, (2) its temporal
evolutionary behaviors at time t (e.g. link connection and
removal)

DySAT: Self-attention 26

Self-attention mechanism used in DySAT:

I Structural:
I At each Gt (t = 1, 2, . . . , T)
I Exactly the same as what a standard GAT does (link)

zv = σ
(∑

u∈Nv

αuvW
sxu

)
where Ws is shared by all nodes, attention weight αuv is
computed upon Wsxu.

I Temporal:
I Over the sequence G = {G1,G2, . . . ,GT }

Zv = βv(XvWv)

this time, attention weight βv ∈ RT×T is computed upon
XvWq, XvWk and M ∈ RT×T .

https://arxiv.org/pdf/1710.10903.pdf

DySAT: Temporal Self-Attention 27

We define M ∈ RT×T as: 2

Mij =

{
0 i ≤ j
−∞ otherwise

The linear projection matrices to generate queries, keys, and
values: Wk,Wq,Wv ∈ RD′×F ′

. βv ∈ RT×T is computed as:

βijv =
exp(eijv)∑T
k=1 exp eikv

where eijv ∈ R is computed as:

eijv =
(((XvWq)(XvWk)T)ij√

F ′
+Mij

)
2M forces the model to attend to previous time steps only.

DySAT Overall Structure 28

Figure: Multi-Faceted Graph Evolution is modeled by applying
multiple attention heads to both structural and temporal attention.

DySAT: objective function 29

Designed for: preserving the local structure around a node
across multiple time steps.

L =

T∑
t=1

∑
v∈V

(∑
u∈N t

walk(v)

− log σ〈etu, etv〉

−wn

∑
u′∈P t

n(v)

log(1− σ〈etu′ , etv〉)
)

Intuition: binary cross-entropy loss at each time step, with
negative sampling, to encourage close 3 nodes to have similar
representations.

3Close nodes are co-occurring in fixed-length random walks.

DySAT: Experiments 30

The experiments are focusing on link prediction.

I Single and multiple step link-prediction performances

I Link-prediction involving unseen nodes and links

I Ablation studies on the attention layers

Significantly outperforms the SOTA models, and found that
within the range of (1, 16), the more attention heads, the
better. More findings are in their paper.

DyGNN: Problem Definition 31

A dynamic graph G = (V, E) is directed in this case, and it
involves N nodes:

V = {v1, v2, . . . , vN}

and a directed edge e could be represented as (vs, vg, t),
meaning an edge linked from vs to vg at time t.

This time, “right before time t ” is denoted as t−.

Idea: to learn an embedding, dynamic is achieved by the
Update and Propagation components working together.

DyGNN: the components 32

There are two major components of the model:

I Update Component: based on the long-short term
memory (LSTM) unit.

I Propagation Component: very similar with a standard
GAT layer’s propagation, except some details e.g. the
selection of activation function, and:
I ignoring the very-old neighbors (long-time no interaction)

that hasn’t interacted for an interval of ∆ > τ .

DyGNN Overall Structure 33

Figure: What happened in DyGNN when a new interaction happened
at t7 from v2 to v5. v1, v3, v6, v7, the direct neighbors, are the
influenced nodes. For more details please refer to their paper.

DyGNN: Learning 34

The DyGNN model itself serves as an encoder that gives uv(t)
as the node v’s embedding at time t.

Losses are different depending on different downstream tasks in
the decoder.

I Link Prediction: negative log-sigmoid of the source &
target inner product; negative-sampling used.

I Node Classification: cross-entropy loss at the last layer
(unit = 2).

TGAT: Problem Definition 35

On a dynamic graph G = (V, E) (can be directed or
undirected), all interactions (e ∈ E) have time associated with
them.
We seek to learn a continuous functional mapping Φ : T → RdT

to encode time, where time domain T = [0, tmax] (tmax is
determined by the observed data).

Idea: learn time-aware embedding, using functional time
encoding and the temporal graph attention layer (TGAT layer).

I TGAT layer: a local aggregation operator that takes (1)
the temporal neighborhood with their hidden
representations (or features) and (2) timestamps as input,
and the output is the time-aware representation.

TGAT Timestamp 36

For node v0 at time t, we define its neighborhood as:

N (v0; t) = {v1, v2, . . . , vN}

where, for each vi ∈ N (v0; t), the interaction between v0 and vi
took place at ti < t.

TGAT Architecture 37

Figure: The architect of the lth TGAT layer with k = 3 attention

heads for node v0 at time t. Output is h̃
(l)
i (t) where i = 0 is the node

index. Feature vectors h̃
(l−1)
i (t) and Φ(t− ti) are simply

concatenated, as the layer’s input. Φ(t− ti) ∈ RdT takes the place of
positional encoding in a standard transformer layer (ref). The
remaining parts (masked multi-head self attention etc.) are almost
the same as GAT.

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

TGAT: More Details on Φ 38

It seems that there’s a glitch in their paper writing (if you
follow their description of Φd, the output dimension will be 2d
instead of d), the Φd implemented in the code is:

Φd(t) = [cos(ω1t+ θ1), cos(ω2t+ θ2), . . . , cos(ωdt+ θd)] ∈ Rd

where both ω = [ω1, . . . , ωd] and θ = [θ1, . . . , θd] are parameters
to be trained.

In fact, we should consider Φ(ti) instead of Φ(t− ti)
(i = 1, 2, . . . , N). However, we are only interested in the
timespan:

|ti − tj | = |(t− ti)− (t− tj)|

so it doesn’t matter which way we use it.

TGAT: Experiments 39

Two kinds of tasks:

I Transductive task: node classification & link prediction
on observed nodes.

I Inductive task: node classification & link prediction
involving unseen nodes.

It outperforms all SOTA models under all tasks.

Conclusion 40

1. No agreement at all on how to model dynamic graph.

2. Multi-head self-attention mechanism is very frequently
applied.

3. To model a continuous time stream, people usually define a
continuous function and learn its parameters.

4. etc.

	Outline
	Paper References
	Dynamic Graph Embedding
	Motivation
	Self-Attention Mechanism

	The Works in Details
	Overview
	DyRep
	DySAT
	DyGNN
	TGAT
	Conclusion

