
Algorithmic Execution via Graph
Representation Learning

ScAi Lab Reading Group Report

Zhiping (Patricia) Xiao

University of California, Los Angeles

October 13, 2021

Outline 2

Introduction

Neural Execution of Graph Algorithms

Pointer Graph Networks

More Related Works

Introduction

q

References 4

Petar’s work:

I Neural Execution of Graph Algorithms (ICLR’20)

I Pointer Graph Networks (NeurIPS’20)

Author’s Presentations:

I https://slideslive.com/38938392/

algorithmic-reasoning-in-the-real-world 1

I https://petar-v.com/talks/Algo-WWW.pdf

I (and more:
https://petar-v.com/communications.html)

1Special thanks to Ziniu.

https://arxiv.org/abs/1910.10593
https://arxiv.org/abs/2006.06380
https://slideslive.com/38938392/algorithmic-reasoning-in-the-real-world
https://slideslive.com/38938392/algorithmic-reasoning-in-the-real-world
https://petar-v.com/talks/Algo-WWW.pdf
https://petar-v.com/communications.html

Motivation 5

Figure: Algorithms

- Inputs must match spec

- Not robust to task
variations

+ Interpretable operations

+ Trivially strongly
generalise

+ Small data is fine

Figure: Neural Networks

+ Operate on raw inputs

+ Models are reusable across
tasks

- Lack of interpretability

- Unreliable when
extrapolating

- Require big data

Observation on Classical Algorithms 6

Scenario 1: Parallel Algorithm
Many algorithms share subroutines. e.g.:

I Shortest-Path Computation via Bellman-Ford Algorithm

I Reachability Computation via Breadth-First Search

both enumerates sets of edges adjacent to a particular node.

Scenario 2: Sequential Algorithm
Some Algorithms focus on one node at a time (different than ↑).
e.g.:

I Minimum Spanning Trees generation via Prim’s Algorithm

Idea 7

So far, researchers have studied: use ground-truth algorithmic
solution (algorithm) to drive learning (neural networks).

Petar’s works: use neural networks (graph neural networks) to
execute classical algorithms (on graphs).

They name it as Neural Graph Algorithm Execution.

Neural Graph Algorithm Execution 8

The approach that:

I Learn several algorithms simultaneously

I Provide a supervision signal
I signal: driven by prior knowledge on how classical

algorithms’ behaviors

and thus transfer knowledge between different algorithms.

Neural Execution of Graph Algorithms

6

Graph Component 10

Two roles:

I Part of the problem provided;

I Inputs to a GNN.

The graph G = (V,E) consists of:

I V : the set of nodes / vertices;

I E: the set of edges / node-pairs.

GNN receives a sequence of T graph-structured inputs (index
t ∈ {1, . . . t),
I Each node i ∈ V has features x

(t)
i ∈ RNx

I Eech edge (i, j) ∈ E has features e
(t)
ij ∈ RNe

I Each step node-level output y
(t)
i ∈ RNy

Encoder-Process-Decoder Architecture 2
11

Consisting of three components:

I an encoder network fA for each algorithm A
I inputs: node feature x, (previous) latent feature h
I output: encoded input z

I a processor network P shared among all algorithms
I inputs: edge feature e, encoded input z
I output: latent feature h

I a decoder network gA for each algorithm A
I inputs: encoded input z, latent feature h
I output: node-level outputs y

2Follows Hamrick et al. 2018

https://arxiv.org/abs/1806.01203

Visualization of the Idea 12

Figure: Relation between local computation of graph algorithm (left)
and the neural graph algorithm executor (right).

Node values y
(t)
i (e.g. reachability, shortest-path distance, etc.) are

updated at every step of execution.
Analogously, node values are predicted by the neural executor from

hidden rep h
(t)
i via message-passing.

(Figure 1 of the paper.)

Visualization of the Idea 13

Figure: An example. Illustrating the alignment of one step of the
Bellman-Ford algorithm (left) with one step of a message passing
neural network (right), and the supervision signal used for the
algorithm learner.
(Figure 2 of the paper.)

Encoder Network fA 14

From features to encoded inputs:

I x
(t)
i : node feature of node i at step t

I h
(t−1)
i : previous latent feature of node i

I z
(t)
i : encoded input of node i at step t

z
(t)
i = fA(x

(t)
i ,h

(t−1)
i) , h

(0)
i = 0

Process Network P 15

From encoded inputs to latent representation:

I E(t) = {e(t)ij }(i,j)∈E : all edge features at step t

I Z(t) = {z(t)i }i∈V : all encoded inputs at step t

I H(t) = {hti ∈ RK}i∈V : all latent features at step t

H(t) = P (Z(t),E(t))

Note that:

1. Parameters of P are shared among all algorithms being
learnt.

2. P make decision on when to terminate the algorithm,
handled by an algorithm-specific termination network TA

Process Network P : Termination Network TA 16

TA is specific to algorithm A:

I H(t) = {hti ∈ RK}i∈V : all latent features at step t

I H(t) = 1
|V |
∑

i∈V h
(t)
i : the average node embedding at step t

I σ: the logistic sigmoid activation

I τ (t): the probability of termination

τ (t) = σ(TA(H(t),H(t)))

Only when τ (t) is below some threshold (e.g. 0.5) we will move
on to the next step (t+ 1).

Decoder Network gA 17

From (algorithm-specific) encoded inputs, and shared latent
features, to algorithm-specific outputs:

I z
(t)
i : encoded input of node i at step t

I h
(t)
i : latent feature of node i at step t

I y
(t)
i : algorithm-specific output of node i at step t

y
(t)
i = gA(z

(t)
i ,h

(t)
i)

If the algorithm hasn’t been terminated (τ (t) is big enough),

parts of y
(t)
i might be reused in x

(t+1)
i (next step node feature).

High-Level Design Decisions 18

All algorithms need to be executed simultaneously.

I Make processor network P algorithm-agnostic.

The majority of the representational power should be placed in
the processor network P .

I All the algorithm-dependent networks fA, gA, TA are
simply linear projections.

Most algorithms require making discrete decisions over
neighborhoods (e.g. “which edge to take”).

I Message-passing neural network with a maximization
aggregator is naturally suitable.

Message-Passing Neural Networks (MPNNs) 19

GATs (Graph Attention Networks):

h
(t)
i = ReLU

(∑
(j,i)∈E

α
(
z
(t)
i , z

(t)
j , e

(t)
ij

)
Wz

(t)
j

)
,

where W is learnable projection matrix, α is the attention
mechanism producing scalar coefficients.

MPNNs (Message-Passing Neural Networks):

h
(t)
i = U

(
z
(t)
i ,

⊕
(j,i)∈E

M
(
z
(t)
i , z

(t)
j , e

(t)
ij

))
,

where M , U are neural networks producing vector messages.
⊕

represents an element-wise aggregation operator, could be
maximization, summation, averaging, etc.

Detailed Design Decisions 20

Employ a GNN layer as P , using MPNNs:

h
(t)
i = U

(
z
(t)
i ,

⊕
(j,i)∈E

M
(
z
(t)
i , z

(t)
j , e

(t)
ij

))
,

I Inserting a self-edge to every node, to make retention of
self-information easier.

I M , U : linear projections

I
⊕

: try mean, sum, max

I Compare to GATs baselines

Data Sets 21

Graphs are generated. 3

For each edge, e
(t)
ij ∈ R is simply a real-value weight, drawn

uniformly from range [0.2, 1].

I Benefit: randomly-sampled edge weights guarantees the
uniqueness of the recovery solution, simplifying
downstream evaluation.

3Follows You et al. 2018, 2019.

https://arxiv.org/abs/1802.08773
https://arxiv.org/abs/1906.04817

Parallel Algorithm: e.g. BFS v.s. B-F 22

Both algorithms:

1. Initialize by randomly select a source node s

2. Input x
(1)
i is initialized according to i = s or i 6= s

3. Aggregate neighborhood information to update

4. Requires discrete decisions (which edge to select)
I For the baselines e.g. GAT, coefficients are thus sharpened.

Parallel Algorithm: e.g. BFS v.s. B-F 23

BFS (Breadth-First Search) for
reachability:

x
(1)
i =

{
1 i = s

0 i 6= s

x
(t+1)
i =


1 x

(t)
i = 1

1 ∃j.(j, i) ∈ E ∧ x(t)j = 1

0 otherwise

x
(t)
i : is i reachable from s in
≤ t hops?

Bellman-Ford for Shortest
Paths:

x
(1)
i =

{
0 i = s

+∞ i 6= s

x
(t+1)
i = min

(
x
(t)
i , min

(j,i)∈E
x
(t)
j +e

(t)
ji

)
x
(t)
i : shortest distance from s to
i (using ≤ t hops)

Parallel Algorithm: e.g. BFS v.s. B-F 24

Recall:

For BFS, no additional information is being computed, thus

node-level output y
(t)
i = x

(t+1)
i

For Bellman-Ford, one have to remember the predecessor so as

to reconstruct the path. Therefore, y
(t)
i = p

(t)
i ||x

(t+1)
i where

predecessor pti =

{
i i = s

arg minj;(j,i)∈E x
(t)
j + e

(t)
ji i 6= s

Sequential Algorithm: e.g. Prim’s Algorithm 25

Prim’s Algorithm for Minimum Spanning Trees (MST):

x
(1)
i =

{
1 i = s

0 i 6= s

x
(t+1)
i =


1 x

(t)
i = 1

1 i = arg min
j s.t.x

(t)
j =0

min
k s.t.x

(t)
k =1

e
(t)
jk

0 otherwise

x
(t)
i : is i in the partial MST tree built from s after t steps?

Similar to Bellman-Ford, the predecessor has to be recorded.

Keeping p
(t)
i — the predecessor of i in the partial MST.

Experimental Results 26

Trained on a graph of 20 nodes, performing well on graphs with
more nodes.

Conclusion 27

The tasks in this paper only focus on node-level representation
(due to the requirement of the experiments).

In theory, this model could also easily include:

I edge-level outputs;

I graph-level inputs / outputs.

Not considering corner-case inputs (e.g. negative weight cycles).

Pointer Graph Networks

6

Pointer Graph Networks (PGNs) 29

The previous work make GNNs learn graph algorithms, and
transfer between them (MTL), using a single neural core
(Process Network P) capable of: sorting, path-finding, binary
addition.

PGNs is a framework that further expands the space of
general-purpose algorithms that can be neurally executed.

Compare to Neural Execution of Graph Algorithms 30

Similar yet different. Different data structure:

I Previous: sequence of graphs G = (V,E)

I PGNs: sequence of pointer-based structures, pointer
adjacency matrix Π(t) ∈ Rn×n is dynamic (like (V,Π))

Problem setup is different. PGN:

I A sequence of operation inputs (of n entities at each step):

E(t) = {e(t)1 , e
(t)
2 , . . . e(t)n } ,

e
(t)
i represents feature of entity i at time t, denoting some

operation (add / remove edge etc.).

I Problem: predicting target outputs y
(t)
i from E(1), . . . E(t)

Task: Motivation 31

Tasks on Dynamic Graph Connectivity are used to illustrate the
benefits of PGNs in the paper.

I DSU: disjoint-set unions, incremental graph connectivity

I LCT: link/cut trees, fully dynamic tree connectivity

Recap: Neural Execution of Graph Algorithms 32

Following the encoder-process-decoder paradigm on a sequence
(t = 1, . . . T) graph-structured inputs G = (V,E):

I an encoder network fA for each A: X(t),H(t−1) → Z(t)

I z
(t)
i = fA(x

(t)
i ,h

(t−1)
i) , h

(0)
i = 0, i ∈ V

I implemented as linear projections

I a processor network P (shared): Z(t),E(t) → H(t)

I H(t) = P (Z(t),E(t))
I implemented as MPNNs

I a decoder network gA for each A: Z(t),H(t) → Y(t)

I y
(t)
i = gA(z

(t)
i ,h

(t)
i)

I implemented as linear projections

Pointer Graph Networks 33

Also encoder-process-decoder paradigm, on sequence of

pointer-based inputs: E(t) = {e(t)i }ni=1, pointer adjacency matrix
Π(t) ∈ Rn×n:

I an encoder network f : E(t),H(t−1) → Z(t)

I z
(t)
i = f(e

(t)
i ,h

(t−1)
i) , h

(0)
i = 0, i ∈ {1, . . . n}

I implemented as linear projections

I a processor network P : Z(t),Π(t−1) → H(t)

I H(t) = P (Z(t),Π(t−1))
I implemented as MPNNs

I a decoder network g: Z(t),H(t) → Y(t)

I y(t) = g(
⊕

i z
(t)
i ,
⊕

i h
(t)
i)

I
⊕

: permutation-invariant aggregator (e.g. sum / max)
I implemented as linear projections

PGNs: Masking for Sparsity 34

Inductive Bias: Many efficient algorithms only modify a small
subset of the entities at once.

To incorporate it: Introducing masking µ
(t)
i ∈ {0, 1} for each

node at each step,

µ
(t)
i = I

ψ(z
(t)
i ,h

(t)
i)>0.5

,

where ψ is the masking network, implemented as linear layers of
appropriate dimensionality, with output activation being
logistic sigmoid (enforcing probabilistic interpretation).

Updating Π(t)
35

Π
(t)
ij = Π̃

(t)
ij ∨ Π̃

(t)
ji ,

where it is found that symmetrise the matrix is beneficial, and
Π̃(t) denotes the pointers before symmetrisation.

Π̃
(t)
ij = µ

(t)
i Π̃

(t−1)
ij + (1− µ(t)i)I

j=argmaxk(α
(t)
ik)

,

where µi are the sparsity mask we’ve mentioned before,

(1− µ(t)i) is negating the mask. α is self-attention coefficient of

h
(t)
i :

α
(t)
ik = softmaxk

(〈
Wqueryh

(t)
i ,Wkeyh

(t)
i

〉)
where Wquery and Wkey are learnable linear transformations.

i.e. Nodes i, j are linked together (Π
(t)
ij = 1) if they are (1)

selected by the sparse mask (2) the most relevant to each other.

PGNs: P 36

In the previous work, P using MPNNs with U,M being linear
layers with ReLU activation functions:

h
(t)
i = U

(
z
(t)
i ,

⊕
(j,i)∈E

M
(
z
(t)
i , z

(t)
j , e

(t)
ij

))
.

In PGNs, P is also using MPNN with linear U,M with ReLU.

h
(t)
i = U

(
z
(t)
i ,

⊕
Π

(t−1)
ji =1

M
(
z
(t)
i , z

(t)
j

))
,

where among all possible choices of aggregator
⊕

, once again,
(element-wise) max outperforms the rest.

Process Visualization 37

Figure: Visualization of pointer graph network (PGN) dataflow.
(Figure 1 in the paper.)

Training Objectives 38

PGNs consider loss of three components at the same time:

I The downstream query loss in y(t) prediction

I Difference between α(t) and ground-truth pointers Π̂(t)

(cross-entropy)

I Output from masking network ψ compared to ground-truth
modification at time step t (binary cross-entropy)

Thereby, domain knowledge is introduced while training.

Task: Explanation 39

DSU: disjoint-set unions

query-union(u, v) is called
each step t, specified by

e
(t)
i = ri||Ii=u∨i=v ,

I ri: priority of node i

I Ii=u∨i=v: is node i being
operated on?

I ŷ(t): u, v in the same set?

I µ̂
(t)
i : node i visible by

find(u) or find(v)?

I Π̂
(t)
ij : π̂i = j after

executing?

LCT: link/cut trees

query-toggle(u, v) is called
each step t, specified by

e
(t)
i = ri||Ii=u∨i=v ,

I ri: priority of node i

I Ii=u∨i=v: is node i being
operated on?

I ŷ(t): u, v connected?

I µ̂
(t)
i : node i visible while

executing?

I Π̂
(t)
ij : π̂i = j after

executing?

More Related Works

6

In Addition 41

More keywords: program synthesis, learning to execute,
message-passing neural network, neural execution engines, etc.

Important previous works:

I Neural Programmer-Interpreters (ICLR’16)

I Deep Sets (NeurIPS’17)

Application to reinforcement learning:

I XLVIN: eXecuted Latent Value Iteration Nets (NeurIPS’20
Workshop)

https://arxiv.org/abs/1511.06279
https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/2010.13146
https://arxiv.org/abs/2010.13146

Thank You! �

	Outline
	Introduction
	Neural Execution of Graph Algorithms
	Pointer Graph Networks
	More Related Works

