Algorithmic Execution via Graph
Representation Learning
ScAi Lab Reading Group Report

Zhiping (Patricia) Xiao

University of California, Los Angeles

October 13, 2021

Outline
e

Introduction

Neural Execution of Graph Algorithms

Pointer Graph Networks

More Related Works

Introduction

=

References 4

—

Petar’s work:
» Neural Execution of Graph Algorithms (ICLR’20)
» Pointer Graph Networks (NeurIPS’20)

Author’s Presentations:
» https://slideslive.com/38938392/
algorithmic-reasoning-in-the-real-world 1
> https://petar-v.com/talks/Algo-WWW.pdf

» (and more:
https://petar-v.com/communications.html)

1Special thanks to Ziniu. W

https://arxiv.org/abs/1910.10593
https://arxiv.org/abs/2006.06380
https://slideslive.com/38938392/algorithmic-reasoning-in-the-real-world
https://slideslive.com/38938392/algorithmic-reasoning-in-the-real-world
https://petar-v.com/talks/Algo-WWW.pdf
https://petar-v.com/communications.html

Motivation 5

Figure: Algorithms Figure: Neural Networks
- Inputs must match spec + Operate on raw inputs
- Not robust to task + Models are reusable across
variations tasks

+ Interpretable operations Lack of interpretability

+ Trivially strongly - Unreliable when
generalise extrapolating
+ Small data is fine - Require big data

Y

Observation on Classical Algorithms 6

—

Scenario 1: Parallel Algorithm
Many algorithms share subroutines. e.g.:

» Shortest-Path Computation via Bellman-Ford Algorithm
» Reachability Computation via Breadth-First Search

both enumerates sets of edges adjacent to a particular node.

Scenario 2: Sequential Algorithm
Some Algorithms focus on one node at a time (different than 7).

e.g.:
» Minimum Spanning Trees generation via Prim’s Algorithm

Y

Idea 7

So far, researchers have studied: use ground-truth algorithmic
solution (algorithm) to drive learning (neural networks).

Petar’s works: use neural networks (graph neural networks) to
execute classical algorithms (on graphs).

They name it as Neural Graph Algorithm Execution.

Y

Neural Graph Algorithm Execution 8

The approach that:

P> Learn several algorithms simultaneously
» Provide a supervision signal

P signal: driven by prior knowledge on how classical
algorithms’ behaviors

and thus transfer knowledge between different algorithms.

Y

Neural Execution of Graph Algorithms

Graph Component 10

Two roles:
» Part of the problem provided;
» Inputs to a GNN.

The graph G = (V, E) consists of:
> V: the set of nodes / vertices;
> E: the set of edges / node-pairs.

GNN receives a sequence of T' graph-structured inputs (index
te{l,...1),

» Each node 7 € V has features xgt) e RN=
» Eech edge (i,7) € E has features eg-) € RNe

» Each step node-level output y(t) e RNy

i Y

Encoder-Process-Decoder Architecture 2

—

Consisting of three components:
> an encoder network fu for each algorithm A
> inputs: node feature x, (previous) latent feature h
» output: encoded input z
P a processor network P shared among all algorithms

» inputs: edge feature e, encoded input z
» output: latent feature h

» a decoder network ga for each algorithm A

» inputs: encoded input z, latent feature h
P> output: node-level outputs y

2Follows Hamrick et al. 2018 W

11

https://arxiv.org/abs/1806.01203

Visualization of the Idea 12

Figure: Relation between local computation of graph algorithm (left)
and the neural graph algorithm executor (right).

Node values y(t) (e.g. reachability, shortest-path distance, etc.) are

i
updated at every step of execution.
Analogously, node values are predicted by the neural executor from

hidden rep hl(»t) via message-passing.

(Figure 1 of the paper.)

Visualization of the Idea 13

1) At)
wy B

'S
oL

)

. 1) . + supervise
min <z.(, s (umul)relE zq(,) + e,m) AAAAAAAAAAAAAAAAA A T] (5'(“01 ® M (Z&t), 5{;”,552))
. (v,u)€E

Figure: An example. Illustrating the alignment of one step of the
Bellman-Ford algorithm (left) with one step of a message passing
neural network (right), and the supervision signal used for the

(Figure 2 of the paper.)

algorithm learner.

Encoder Network f4
—

From features to encoded inputs:
> th): node feature of node 7 at step ¢
> hgt_l): previous latent feature of node i

> zgt): encoded input of node i at step ¢

2D = fax® Yy, B® —g

14

Process Network P 15

—

From encoded inputs to latent representation:
> EO) = {eg)}(i,j)eﬂ all edge features at step ¢
> 70 = {zl(.t)}ievz all encoded inputs at step ¢
> HO = {hl e RK}Z'GV: all latent features at step ¢

H® — p(z(t)7E(t))
Note that:

1. Parameters of P are shared among all algorithms being
learnt.

2. P make decision on when to terminate the algorithm,
handled by an algorithm-specific termination network 7'y

Y

Process Network P: Termination Network 7'y 16

—

T, is specific to algorithm A:
> H® = {ht € RE},cy: all latent features at step ¢
> HO = l—é' Y iy hgt): the average node embedding at step t
> o: the logistic sigmoid activation

» 7). the probability of termination

0 = (T4 (H®, HO))

Only when 7® is below some threshold (e.g. 0.5) we will move
on to the next step (¢ + 1).

Y

Decoder Network g4 17

—

From (algorithm-specific) encoded inputs, and shared latent
features, to algorithm-specific outputs:

> zgt): encoded input of node 7 at step ¢

> hgt): latent feature of node ¢ at step ¢

> ygt): algorithm-specific output of node 7 at step ¢

v = ga(z” 0"
If the algorithm hasn’t been terminated (7(*) is big enough),
(®) (t+1)

might be reused in x (next step node feature).

Y

parts of y

High-Level Design Decisions 18

All algorithms need to be executed simultaneously.

> Make processor network P algorithm-agnostic.

The majority of the representational power should be placed in
the processor network P.

» All the algorithm-dependent networks fa, ga, T4 are
simply linear projections.

Most algorithms require making discrete decisions over
neighborhoods (e.g. “which edge to take”).

> Message-passing neural network with a maximization

aggregator is naturally suitable.

Message-Passing Neural Networks (MPNNs) 19

GATs (Graph Attention Networks):

b =ReLU(> a(a”.20, el yWa{"),
(jR)eEE

where W is learnable projection matrix, « is the attention
mechanism producing scalar coefficients.

MPNNSs (Message-Passing Neural Networks):

hi (@Ml’]’gjt)))

(J)eE

where M, U are neural networks producing vector messages. P
represents an element-wise aggregation operator, could be

maximization, summation, averaging, etc.

Detailed Design Decisions 20

—

Employ a GNN layer as P, using MPNNs:

b = U (a0, @ M2).
(jR)eE

> Inserting a self-edge to every node, to make retention of
self-information easier.

> M, U: linear projections
> P: try mean, sum, max

» Compare to GATs baselines

Data Sets
—

Graphs are generated. >
For each edge, ez(;) € R is simply a real-value weight, drawn
uniformly from range [0.2, 1].

» Benefit: randomly-sampled edge weights guarantees the

uniqueness of the recovery solution, simplifying
downstream evaluation.

3Follows You et al. 2018, 2019. W

21

https://arxiv.org/abs/1802.08773
https://arxiv.org/abs/1906.04817

Parallel Algorithm: e.g. BFS v.s. B-F 22
—

Both algorithms:

1. Initialize by randomly select a source node s
(1)

2. Input x; "’ is initialized according to i = s or 7 # s
3. Aggregate neighborhood information to update
4. Requires discrete decisions (which edge to select)

» For the baselines e.g. GAT, coefficients are thus sharpened.

Y

Parallel Algorithm: e.g. BFS v.s. B-F 23
—

BFS (Breadth-First Search) for Bellman-Ford for Shortest

reachability: Paths:
1 i=s 0 i=s
a1 a0
0 i#s +oo i# s
1 2 =1
Z =01 3G eBAa? =1 2 = min (of, min o0el))
. (Ji)eE
0 otherwise
xl(t): is i reachable from s in %(t): .shortest distance from s to
< t hops? i (using < ¢ hops)

Y

Parallel Algorithm: e.g. BFS v.s. B-F 24
Recall:

For BFS, no additional information is being computed, thus
(t) (t+1)

node-level output y;” = x;

For Bellman-Ford, one have to remember the predecessor so as

& =Y

to reconstruct the path. Therefore, y where

i 1=35
predecessor pl = . o .
argming,; nep ¢, +e; 1 #s

Y

Sequential Algorithm: e.g. Prim’s Algorithm 25

Prim’s Algorithm for Minimum Spanning Trees (MST):

(1) 1 i=s
€T: =
! 0 i#s

0 _ 4

7

(t+1) . :
xi - L= arg mlnj s.t.z§t):0

1 «x

min ® e(.t)
k s.t.xy, =1 Jjk
0 otherwise

2 is i in the partial MST tree built from s after ¢ steps?

(2

Similar to Bellman-Ford, the predecessor has to be recorded.
()

Keeping p;” — the predecessor of ¢ in the partial MST.

Y

Experimental Results

—

Trained on a graph of 20 nodes, performing well on graphs with
more nodes.

‘Table 2: Accuracy of predicting the shortest-path predecessor node at different test-set sizes. (cur-
riculum) corresponds to a curriculum wherein reachability is learnt first. (no-reach) corresponds to
{raining without he eachabiity task. (no-al) cormesponds o he lasical setp of direedly waining
on the predecessor, without predicting any intermediate outputs or distances.

‘Table 1: Accuracy of predicting reachability at different test-set sizes, trained on graphs of 20 nodes. 7

GAT* correspond to the best GAT setup as per Section 3 (GAT-full sing the full graph). Model 20 nodes 50 nodes 100 nodes

LST™M 1Hochn-.|l=r & Schmidhuber, 1997) 47.20% /47.04% 36.34%/35.24% 27.59%/27.31%
‘Reachability 7

etal,, 2018) 64.77%/6037% 5220%/49.71% 47.23%/44.90%
Model 20 nodes 30 nodes 100 nodes GAT ﬁl“‘ (stw-m etal,, 2017) 67.31%/63.99% 50.54% /48.51% 43.12%/41.80%
LSTM (Hochreiter & Schmidhuber, 1997) 81.97%/82.29% 88.35% /91.49% 68.19% /6337% al.,2017) 03.83%/9320% S8.60%/ S8.02% 44.24% 1 43.93%
GAT* (Velitkovi¢ et al., 2018) 93.28%/99.86% 93.97%/100.0% 92.34% /99.97% MPNN-sum (Gilmer et al., 2017) 82.46% /80.49% 54.78% /52.06% 37.97%/37.32%
GAT-full* (Vaswani et al., 2017) 78.40% /77.86% 85.76% /91.83% 88.98%/91.51% MPNN-max (Gilmer et al., 2017) 97.13% /96.84% 94.71% /93.88% 90.91% / 88.79%
'MPNN-mean (Gilmer et al., 2017) 100.0% /100.0% 61.05% /57.89% 27.17% / 21.40% MPNN-max (rurm-ulum) 95.88% /95.54% 91.00% /88.74% 84.18% /83.16%
MPNN-sum (Gilmer et al., 2017) 99.66% /100.0% 94.25% / 100.0% 94.72% / 98.63% MPNN-max (no- 82.40%/7829% 78.79%/77.53% 81.04% /81.06%
MPNN-max (Gilmer et al., 2017) 100.0% /100.0% 100.0% / 100.0% 99.92% / 99.80% MPNN-max (no- alxo) 78.97%/95.56% 83.82%/85.87% 79.77%/78.84%

‘Table 3: Mean squared efror for predicting the intermediate distance information from Bellman-Ford,

and accuracy of the termination network compared o the ground-truth algorithm, averaged across all X . .

timesteps. (curriculum) corresponds to a curriculum wherein reachability is learnt first. (no-reach) ~ Table 6: Accuracy of selecting the next node to add to the minimum spanning tree, and predicting the

corresponds to training without the reachability task. ‘minimum tree predecessor node—at different test-set sizes. (mnlgu) conespunds 10 the
classical setup of directly training on the predecessor, without adding nodes sequentially.

BF 7
Model 20 nodes 50 nodes 100 nodes Accuracy (next MST node / ST predecesor)
LSTM (Hochreiter & Schmidhuber, 1997) 3.857/83.43% 1192/86.74% 7436/ 8355% Model 20nodes
L & Schmidhuber, 1997) 1129%/5281% _ 3.54%/47.74% __ 2.66% 1 4089%

GAT* (Velickovic etal, 2018) 4349/8533% 123.1/8488% 183.6/8216%
GAT-full* (Vaswani et al,, 2017) 7189/77.14% 2889/7551% 5808/7730% AT Cllickoric o L, 2018 27.94% 16174% 2211%/5866% 1097%/ 53.80%

g 4l 2017) 2094%/6427% 1891%/5334% 14.83% /51.49%
MPNN-mean (Gilmer et al., 2017) 0021/9857% 2373/8929% 9158/8681%
MPNN-sum (Gilmer et al., 2017) 0.156/98.09% 4.745/88.11% +00/87.71% MPNN-mean (Gilmer et al., 2017) 90.56% /93.63% 5223%/88.97% 20.63% /80.50%
MPNN-max (Gilmer et al, 2017) 0.005/9889% 0.013/98.58% 0238/97.82% MPNN.sum (Gilmer et al, 2017) 4805% /T1.41% 2440%/61.83% 31.60% /4398%

al,2017) 87.85%/9323% 6389% /9L14% 4137%/90.02%

Mo curicuum) 0021/9899% 0351/9634% 3650/9234%

MPNN-max (no-reach) 0452/80.18% 2.512/91.77% _ 2.628/85.22% MPNN-max (no-algo) —171.02% —149.83% —12361%

Conclusion 27

—

The tasks in this paper only focus on node-level representation
(due to the requirement of the experiments).

In theory, this model could also easily include:
> edge-level outputs;
» graph-level inputs / outputs.

Not considering corner-case inputs (e.g. negative weight cycles).

Y

Pointer Graph Networks

Pointer Graph Networks (PGNs) 29
—

The previous work make GNNs learn graph algorithms, and
transfer between them (MTL), using a single neural core
(Process Network P) capable of: sorting, path-finding, binary
addition.

PGNs is a framework that further expands the space of
general-purpose algorithms that can be neurally executed.

Y

Compare to Neural Execution of Graph Algorithms 30

—

Similar yet different. Different data structure:
» Previous: sequence of graphs G = (V, E)

» PGNs: sequence of pointer-based structures, pointer
adjacency matrix II®) € R™ " is dynamic (like (V,II))

Problem setup is different. PGN:

> A sequence of operation inputs (of n entities at each step):

= {e1 ,e2 ,...e,(f)},
eit) represents feature of entity ¢ at time ¢, denoting some
operation (add / remove edge etc.).

» Problem: predicting target outputs y(t) from W, ... £®

Z Y

Task: Motivation 31

—

Tasks on Dynamic Graph Connectivity are used to illustrate the
benefits of PGNs in the paper.

» DSU: disjoint-set unions, incremental graph connectivity

» LCT: link/cut trees, fully dynamic tree connectivity

Y

Recap: Neural Execution of Graph Algorithms 32
—

Following the encoder-process-decoder paradigm on a sequence
(t =1,...T) graph-structured inputs G = (V, E):
> an encoder network f4 for each A: X H(-1 — z(®)
> 2 = faxP nY)y) n® —oiev
» implemented as linear projections
> a processor network P (shared): Z() E®) — H®
> HO = p(Z®, EW)
» implemented as MPNNs
» a decoder network gy for each A: Z() H® — Y
> 1" = ga(z",n}")
» implemented as linear projections

Y

Pointer Graph Networks 33
—

Also encoder-process-decoder paradigm, on sequence of
pointer-based inputs: £®) = {egt)}?zl, pointer adjacency matrix
I € R
> an encoder network f: £ HI-D — 7(1)
> 20 = e nl"), n”=o0ie{l,...n}
» implemented as linear projections
> a processor network P: Z(®) T1¢-1) — H®
> H® = p(Z® 11t-D)
» implemented as MPNNs
» a decoder network ¢: Z(), H® — Y

>y = g(@, 7", @, h")
> P: permutation-invariant aggregator (e.g. sum / max)

» implemented as linear projections

PGNs: Masking for Sparsity 34
—

Inductive Bias: Many efficient algorithms only modify a small
subset of the entities at once.

To incorporate it: Introducing masking pgt) € {0,1} for each
node at each step,

) _
i = H¢(z£t),hgt))>0,5)

where 1 is the masking network, implemented as linear layers of
appropriate dimensionality, with output activation being
logistic sigmoid (enforcing probabilistic interpretation).

Y

Updating I1® 35

o — a® v a®

7 ij Ji
where it is found that symmetrise the matrix is beneficial, and
I1(Y) denotes the pointers before symmetrisation.

g _ O ppE-1) (t)
Iy = w7+ (U= DL s (@2 2

where p; are the sparsity mask we’ve mentioned before,

(1-— ugt)) is negating the mask. « is self-attention coefficient of
llgt):

ol = softmaxy, ((uneryhj.”, Wieyh!” >)
where W uery and Wy, are learnable linear transformations.

i.e. Nodes i, j are linked together (Hg-) = 1) if they are (1)
selected by the sparse mask (2) the most relevant to each other.

Y

PGNs: P 36
—

In the previous work, P using MPNNs with U, M being linear
layers with ReLLU activation functions:

h? = U(z(.t), @ M(z(t) 2! e(t))) .

i 245 €
(el

In PGNs, P is also using MPNN with linear U, M with ReLU.

n! =v(z”, @ ME".A)),
i V=1

where among all possible choices of aggregator €, once again,

(element-wise) max outperforms the rest.

Process Visualization 37

—

©

1 Q) @
@)

I

=
=

8
r
8

Y() W(-,-)

= @ -@@ @
GNN @ __Self-Attn GNN @ repeat
Equs. 1.2 ¥(,) " Bans. 67 Equs. 1-2 Do) P

&

y @)
@ 2D | @
Eqn. 3 Eqn. 3

Figure: Visualization of pointer graph network (PGN) dataflow.

(Figure 1 in the paper.)

e

55N
<

()

&

Training Objectives 38

PGNs consider loss of three components at the same time:
» The downstream query loss in y® prediction

» Difference between a® and ground-truth pointers I
(cross-entropy)

» Output from masking network v compared to ground-truth
modification at time step ¢ (binary cross-entropy)

Thereby, domain knowledge is introduced while training.

Y

Task: Explanation 39

—

DSU: disjoint-set unions LCT: link/cut trees

QUERY-UNION(u, v) is called
each step t, specified by

QUERY-TOGGLE(u, v) is called
each step t, specified by

v

t

e§) = 73 || Lizuvi=o »
r;: priority of node
Ii—uvi=y: is node 7 being
operated on?
y®: wu, v in the same set?
,&Et): node ¢ visible by
FIND(u) or FIND(v)?
f[g-): w; = j after
executing?

t
el() = il Li—uvieo ,
r;: priority of node ¢
I;—yvi=vy: is node ¢ being
operated on?
y®): wu, v connected?

(®)

ft; "2 node 7 visible while
executing?

fIZ(-;): w; = j after
executing?

Y

More Related Works

In Addition 41
—

More keywords: program synthesis, learning to execute,
message-passing neural network, neural execution engines, etc.

Important previous works:
» Neural Programmer-Interpreters (ICLR’16)
» Deep Sets (NeurIPS’17)

Application to reinforcement learning:

» XLVIN: eXecuted Latent Value Iteration Nets (NeurIPS’20
Workshop)

Y

https://arxiv.org/abs/1511.06279
https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/2010.13146
https://arxiv.org/abs/2010.13146

Thank You! ©

	Outline
	Introduction
	Neural Execution of Graph Algorithms
	Pointer Graph Networks
	More Related Works

