
ECE 236B
Convex Optimization

Note

Patricia Xiao (Zhiping)

Winter 2019

Contents

1 Introduction 6

1.1 Mathematical Optimization . 6

1.2 Least Square and Linear Programming 6

1.3 Examples . 6

1.4 Nonlinear Optimization (Non-Linear Programming) 7

1.5 A Brief History . 7

2 Math Basis 7

2.1 Numerical linear algebra background 7

2.1.1 Introduction . 7

2.1.2 Matrix structure and algorithm complexity 7

2.1.3 Solving linear equations with factored matrices 8

2.1.4 LU factorization . 10

2.1.5 sparse LU factorization . 10

2.1.6 Cholesky factorization . 10

2.1.7 sparse Cholesky factorization 10

2.1.8 LDLT factorization . 10

2.1.9 Equations with structured sub-blocks 11

2.1.10 Structured matrix with low-rank term 11

2.2 Linear Algebra . 12

2.2.1 Dimension & Rank and Determinants 12

1

2.2.2 Norm . 12

2.2.3 Dual Norm . 12

2.2.4 Null Space (a.k.a. Kernel), Range (a.k.a. Image) 12

2.2.5 Pseudo-Inverse . 13

2.2.6 Vectorization . 13

2.2.7 Singular Matrix . 14

2.2.8 More on Determinant . 14

2.2.9 Matrix Trace . 14

2.2.10 Eigen Decomposition . 15

2.2.11 Positive Semi-Definite Matrix 15

2.2.12 Positive Definite Matrix . 16

2.2.13 Schur complement . 16

2.3 Calculus and Analysis . 16

2.3.1 Differentiate . 16

2.3.2 Conjugation . 17

2.3.3 Complex Conjugate . 17

3 Course Concepts 17

3.1 Introduction . 17

3.1.1 Mathematical Optimization and Convex Optimization 17

3.1.2 Least Square and Linear Programming 18

3.2 Convex Set . 19

3.2.1 Empty Set . 19

3.2.2 Affine Sets and Convex Sets 19

3.2.3 Convex Combination and Convex Hull 20

3.2.4 Conic combination and Convex Cone 20

3.2.5 Hyperplane and Halfspace (example 1 of convex set) 20

3.2.6 Euclidean Balls and Ellipsoids (example 2 of convex set) . . . 21

3.2.7 Norm Balls and Norm Cones (example 3 of convex set) 21

3.2.8 Polyhedra (a.k.a. Polytopes) (example 4 of convex set) 22

3.2.9 Positive Semidefinite Cone (example 5 of convex set) 22

3.2.10 Operations that Preserve Convexity 23

3.2.11 Generalized Inequalities . 24

3.2.12 Minimum and Minimal elements of Generalized Inequality . . 25

2

3.2.13 Separating Hyperplanes and Supporting Hyperplanes 26

3.2.14 Dual Cones and Generalized Inequalities 26

3.2.15 Minimum and Minimal Elements via Dual Inequalities 27

3.3 Convex Function . 27

3.3.1 Definition . 27

3.3.2 Convex and Concave Examples 28

3.3.3 Trick 1: Restriction of a convex function to a line 28

3.3.4 Trick 2: Extended-value extension 29

3.3.5 Trick 3.1: First-Order Condition 29

3.3.6 Trick 3.2: Second-Order Conditions 30

3.3.7 Epigraph and Sublevel Set . 31

3.3.8 Jensen’s Inequality . 32

3.3.9 Brief Summary: How to prove convexity? 32

3.3.10 Operations that Preserve Convexity 32

3.3.11 The Conjugate Function . 36

3.3.12 Quasiconvex Functions (1/3 Generalization) 36

3.3.13 Log-concave and Log-convex Functions (2/3 Generalization) . 38

3.3.14 Convexity with respect to Generalized Inequalities (3/3 Gener-
alization) . 40

3.4 Convex Optimization Problems . 40

3.4.1 Optimization Problem in Standard Form 40

3.4.2 Convex Optimization Problems 42

3.4.3 Quasiconvex Optimization . 45

3.4.4 Linear Optimization (LP) . 46

3.4.5 Quadratic Optimization (QP, SOCP, QCQP) 48

3.4.6 Geometric Programming (GP) 50

3.4.7 Generalized Inequality Constraints 52

3.4.8 Semidefinite Program (SDP) 52

3.4.9 Vector Optimization . 54

3.5 Duality . 56

3.5.1 Lagrangian . 56

3.5.2 Lagrange dual function . 56

3.5.3 Lagrange dual and Conjugate Function 57

3.5.4 (Lagrange) dual problem . 58

3

3.5.5 Weak and strong duality . 58

3.5.6 Slater’s Constraint Qualifications 58

3.5.7 Geometric interpretation . 60

3.5.8 Optimality Conditions: Complementary Slackness 60

3.5.9 Optimality Conditions: Karush-Kuhn-Tucker (KKT) Conditions 60

3.5.10 Perturbation and sensitivity analysis 61

3.5.11 Generalized inequalities . 62

3.6 Approximation and fitting . 63

3.6.1 Norm approximation . 63

3.6.2 Least-norm problems . 65

3.6.3 Regularized approximation . 66

3.6.4 Robust approximation . 66

3.7 Statistical estimation . 67

3.7.1 Maximum likelihood estimation (MLE) 67

3.7.2 Optimal detector design . 67

3.7.3 Experiment design . 67

3.8 Geometric problems . 68

3.8.1 Extremal volume ellipsoids . 68

3.8.2 Centering . 69

3.8.3 Classification . 69

3.9 Unconstrained minimization . 70

3.9.1 Terminology and assumptions 70

3.9.2 Gradient descent method . 71

3.9.3 Steepest descent method . 71

3.9.4 Newton’s method gradient . 72

3.9.5 Newton decrement . 73

3.9.6 Newton’s method . 73

3.9.7 Classical Convergence Analysis for Newton method 74

3.9.8 Newton Method and Cholesky factorization 75

3.10 Equality constrained minimization . 75

3.10.1 Eliminating equality constraints 76

3.10.2 Newton’s method with equality constraints 76

3.10.3 Infeasible start Newton method 77

3.10.4 Implementation of the Newton Method 78

4

3.11 Interior-point methods . 79

3.11.1 Inequality constrained minimization 79

3.11.2 Logarithmic barrier function and central path 79

3.11.3 Barrier method . 81

3.11.4 Feasibility and phase I methods 82

3.11.5 Complexity analysis via self-concordance 82

3.11.6 Generalized inequalities . 82

3.11.7 Primal-dual interior-point methods 85

4 Exercise and Examples Conclusions 85

4.1 Basic Settings . 85

4.1.1 About Vectors . 85

4.2 Math Tools . 86

4.2.1 Cauchy-Schwarz Inequality . 86

4.2.2 Jensen’s Inequality . 86

4.3 Proof Routines . 86

4.3.1 To prove convex set . 86

4.3.2 To prove convex function . 87

4.3.3 To prove quasiconvex / quasiconcave / quasilinear 87

4.3.4 Relaxations on Constraints’ Expressions 88

4.3.5 Lagrangian, Dual, KKT . 88

4.4 Matrix Tricks . 89

4.4.1 Dealing with Sn+ or Sn++ . 89

4.4.2 A useful fact . 89

4.4.3 Some Useful Equations about Trace 89

4.4.4 Eigenvalue Decomposition . 89

5

1 Introduction

What makes learning Convex Optimization useful?

This course also includes code implementation, a package called cvx in matlab,
equivalent package called cvxpy in Python (https://www.cvxpy.org/). Some useful
examples on https://www.cvxpy.org/examples/index.html. Such as the basic
functions at https://www.cvxpy.org/tutorial/functions/index.html.

Stanford online course (https://lagunita.stanford.edu/courses/Engineering/
CVX101/Winter2014/course/) is also pretty helpful.

1.1 Mathematical Optimization

Minimize a function, subject to some constraints.

Not necessarily convex.

Variables are not actions, they are parameters of the model.

General optimization problems could be hard to solve (and not always finding a
solution). But some special cases, like least square, is easy to solve. Solve means
finding the global minimum - and it is guaranteed to exist.

1.2 Least Square and Linear Programming

Their common parent is the convex optimization problem.

Least square problems has analytical solutions. There are analytical solutions that
are impossible to actually compute, but in this course, we are focusing on some
problems that don’t have analytical solution but are easy to compute. Convex
optimization problems normally don’t have analytical solutions, but have reliable and
efficient algorithms.

Linear Programming doesn’t have analytical solution. The cool thing about it is that
there are many problems in other forms, could be transformed into a Linear
Programming problem. We’d have to know what kinds of questions can be
transformed and how to transform. This extends the range of problems that linear
programming applies to.

Both models are mature techniques, tracing back to Gauss and Fourier time. Both
of them are special cases of convex optimization.

1.3 Examples

Lamp-illuminating problem, optimizing the mini-max percentage error; constraint
the range (of the light power) between 0 and max; with regularization towards (max
/ 2).

Constraints might look the same but totally different. Untrained intuitions are not
reliable.

It is important to get trained and find “the correct thing to estimate” properly.

In this course, not to replicate, but to demystify.

6

https://www.cvxpy.org/
https://www.cvxpy.org/examples/index.html
https://www.cvxpy.org/tutorial/functions/index.html
https://lagunita.stanford.edu/courses/Engineering/CVX101/Winter2014/course/
https://lagunita.stanford.edu/courses/Engineering/CVX101/Winter2014/course/

1.4 Nonlinear Optimization (Non-Linear Programming)

Traditional method of non-convex problems.

Back then (50’s, 60’s etc.) scientists are categorizing problems as, LP (Linear
Programming), NLP (Non-Linear Programming), ILP (I for integer), etc.

For Non-Linear Programming, localized solution starts from an initial guess and go
gradient descent, global solution could be exponential time in the worst case. Almost
every global optimization is based on convex optimization as a subroutine.

1.5 A Brief History

Convex analysis 1900-1970 roughly.

The algorithms involved includes (according to the timeline):

• simplex (an algorithm, very simple) for linear programming

• early interior-point method

• ellipsoid method and other subgradient methods

• polynomial-time interior-point method for linear programming

• polynomial-time interior-point method for non-linear convex optimization

Generally, the application in engineering fields increased dramatically.

2 Math Basis

2.1 Numerical linear algebra background

2.1.1 Introduction

Going deep into the solver.

2.1.2 Matrix structure and algorithm complexity

Time complexity solving Ax = b with A ∈ Rn×n, in terms of the flop (floating-point
operation, a rough estimation)1 count:

• For general methods, grows as n3;

• Less if A well-structured: banded2, sparse, Toeplitz, etc.

1Just the standard method we use to estimate time complexity.
2The larger difference between i and j, the closer to 0 aij is.

7

Vector operations with x, y ∈ Rn:

• inner product xTy: 2n− 1 flops

• sum x+ y: n flops

• scalar multiplication αx: n flops

matrix-vector product y = Ax with A ∈ Rm×n:

• m(2n− 1) flops

• if A is sparse with N non-zero elements, 2N flops

• if A = UV T (U ∈ Rm×p, V ∈ Rn×p): 2p(n+m) flops.

matrix-matrix product C = AB with A ∈ Rm×n, B ∈ Rn×p:

• mp(2n− 1) flops

• less if A or B is sparse

• if C symmetric, and m = p: 1
2
(m+ 1)(2n− 1) ≈ m2n flops

a norm ‖Ax− b‖2
1 + λ‖x‖2

1 with A ∈ Rm×n, λ > 0:

• mn2 flops if m ≥ n

• m2n flops if n ≥ m

• After solving one value of λ, cost of solving k other λ value versions is:n2k when
m ≥ n, m2k when n ≥ m

The performance could be also greatly influenced by the order you compute them.

2.1.3 Solving linear equations with factored matrices

x = A−1b is easy to solve when A is:

• diagonal matrix (when i 6= j, aij = 0): n flops

x = (b1/a11, b2/a22, . . . , bn/ann)

8

• lower triangular matrix (when i < j, aij = 0): n2 flops

x1 = b1/a11

x2 = (b2 − a21x1)/a22

x3 = (b3 − a31x1 − a32x2)/a33

. . .

xn = (bn − an1x1 − an2x2 − · · · − an,n−1xn−1)/ann

The flop count for computing A−1b is the same order as the flop count for
computing Ab.

• upper triangular matrix (when i > j, aij = 0): n2 flops, similar with the
lower triangular one

• orthogonal matrix (AT = A−1):

1. For general orthogonal A, 2n2 flops

2. If further structured could be less, e.g. if A = I − 2uuT , ‖u‖2 = 1, only 4n
flops. A−1b = AT b = b− 2uT bu

3. If it is special, permutation matrix:

aij =

{
1 j = πj

0 otherwise

where π = (π1, π2, . . . , πn) is a permutation (re-order) of (1, 2, . . . , n).

Ax = (xπ1 , . . . , xπn)

costs 0 flops.

The factor-solve methods for solving Ax = b: cost one factorization plus k
solves, the factorization always dominant the cost

1. Factor A into simple matrices mentioned before (those kinds above, usually
k = 2 or 3):

A = A1A2 . . . Ak

2. Solving A1x1 = b, A2x2 = x1, . . . , Akxk = xk−1

3. Now we have:
x = A−1b = AkAk−1 . . . A1b

Equations with multiple right hand sides:

Axi = bi, i = 1, 2, . . . ,m

cost is one factorization plus m solves.

9

2.1.4 LU factorization

Every nonsingular matrix A (invertible) could be factored as:

A = PLU

where P is permutation matrix, L lower-triangular and U upper-triangular.

Factorization cost: (2/3)n3 flops.

Solving linear equation with LU costs: factorization plus solvers = (2/3)n3 + 0 +n2 +
n2 ≈ (2/3)n3.

2.1.5 sparse LU factorization

A = P1LUP2

Another permutation matrix P2 makes it possible (heuristic) for L,U being sparse.
Cost is usually less that (2/3)n3, but the exact value depends, and is really complex.

P T
1 AP

T
2 = LU

2.1.6 Cholesky factorization

Every positive definite A (A � 0) could be factored as:

A = LLT

where L is lower-triangular.

It costs (1/3)n3 flops to do this factorization.

People often require L’s entries to be positive.

The computation cost of a linear equation is then (1/3)n3 + n2 + n2 ≈ (1/3)n3.

2.1.7 sparse Cholesky factorization

A = PLLTP T

with permutation matrix P that makes L hopefully sparse (heuristic). Complexity
is usually less that (1/3)n3, depends only on the sparsity features of A, but still
complex.

P TAP = LLT

2.1.8 LDLT factorization

Any nonsingular symmetric matrix A can be factored as:

A = PLDLTP T

P,L has similar meanings as before, D is block-diagonal with 1× 1 or 2× 2 diagonal
blocks.

General solving time: (1/3)n3.

With sparse A, could have sparse L, and the cost will be significantly smaller.

10

2.1.9 Equations with structured sub-blocks

The first topic under Block elimination and the matrix inversion lemma.[
A11 A12

A21 A22

] [
x1

x2

]
=

[
b1

b2

]
with xi ∈ Rni , Ai,j ∈ Rni×nj .

If A11 is nonsingular:

x1 = A−1
11 (b1 − A12x2)

(A22 − A21A
−1
11 A12)x2 = b2 − A21A

−1
11 b1

Compute them little by little, x2 first and then x1.

In the middle of the process, Schur complement:

S = A22 − A21A
−1
11 A12

is computed.

Cost of computing the Schur complement is:

f + n2s+ n2
2n1

if simply compute the Schur complement of A11.

The total cost is:
f + n2s+ 2n2

2n1 + (2/3)n3
2

where f is the factorization cost, s is the cost of solving the actual problem.

2.1.10 Structured matrix with low-rank term

The first topic under Block elimination and the matrix inversion lemma.

(A+BC)x = b

with A ∈ Rn×n and structured, B ∈ Rn×p, C ∈ Rp×n. B,C low-rank.[
A B
C −I

] [
x
y

]
=

[
b
0

]
y is introduced, called in-elimination.

Thus we have:
(I + CA−1B)y = CA−1b

Ax = b−By
this proves the block-inversion lemma: with A and A+BC nonsingular,

(A+BC)−1

=A−1 − A−1B(I + CA−1B)−1CA−1

A beautiful example: A diagonal and B,C dense: with this block method its cost
is as low as:

2p2n+ (2/3)p3 ≈ 2p2n

11

2.2 Linear Algebra

2.2.1 Dimension & Rank and Determinants

Refer to http://www.math.drexel.edu/~jwd25/LA_FALL_06/lectures/lecture4B.
html.

2.2.2 Norm

• ‖x‖1 =
∑n

i=1 xi for x ∈ Rn

2.2.3 Dual Norm

The dual norm of ‖x‖ is:
‖x‖∗ = sup

‖u‖≤1

uTx

A trick:
‖x‖ − ATx ≥ 0 =⇒ ‖A‖∗ ≤ 1

inf
x

(
‖x‖+ ATx

)
=⇒ 0 (‖A‖∗ ≤ 1)

2.2.4 Null Space (a.k.a. Kernel), Range (a.k.a. Image)

Null space:

Given:

• Linear transformation on Rn: T

then the set of vector X, who makes:

T (X) = 0

is called the null space (Null(X)), or kernel (Ker(X)).

In other words,
N (A) = {x|Ax = 0}

To find the nullspace of a matrix, we can apply procedures:

• QR factorization

• Singular value decomposition

12

http://www.math.drexel.edu/~jwd25/LA_FALL_06/lectures/lecture4B.html
http://www.math.drexel.edu/~jwd25/LA_FALL_06/lectures/lecture4B.html

Range: sometimes also called “image” and expressed as Im(A) etc.

R(A) = {Ax|x ∈ Rn}

They are connected in various ways (Let’s assume N (A) ∈ Rn, R(A) ∈ Rm):

dimN (A)⊥ = dimR(AT) = dimR(A) = r

dimN (A) = n− r

dimR(A)⊥ = dimN (AT) = m− r

x ∈ N (A)⊥ =⇒ Ax ∈ R(A)

R(A)⊥ ⇐⇒ N (AT) N (A)⊥ ⇐⇒ R(AT)

x1 ∈ R(AT) = N (A)⊥, x2 ∈ A =⇒ x1x2 ∈ R(A)

x1 ∈ N (A), x2 ∈ A =⇒ x1x2 ∈ {0}

Besides we have:

R(AB) ⊆ R(A) N (AB) ⊇ N (B) R((AB)T) ⊆ R(BT) N ((AB)T) ⊇ N (AT)

R(A) = R(AAT) N (A) = N (AAT)

Could view this problem in such a way that: thinking about 3D space, x, y-plane’s
Null Space is those who parallel with the z-axis, etc.

Could refer to mathworld at http://mathworld.wolfram.com/NullSpace.html and
https://math.stackexchange.com/questions/2037602/what-is-range-of-a-matrix.

2.2.5 Pseudo-Inverse

With independent rows, we have that AAT is nonsingular, and thus:

A† = AT (AAT)−1

With independent columns, we have that ATA is nonsingular, and thus:

A† = (ATA)−1AT

2.2.6 Vectorization

vec(A) = [a1,1, . . . , am,1, a1,2, . . . , am,2, . . . , a1,n, . . . , am,n]T

Resulting in A ∈ Rm×n, column matrix.

13

http://mathworld.wolfram.com/NullSpace.html
https://math.stackexchange.com/questions/2037602/what-is-range-of-a-matrix

2.2.7 Singular Matrix

A square matrix that does not have a inverse.

A singular matrix A has det(A) = 0.

Could refer to mathworld at http://mathworld.wolfram.com/SingularMatrix.

html.

2.2.8 More on Determinant

It is calculated via:

det(A) =
n∑
i=1

aij(−1)i+jA−(i,j)

where A−(i,j) is A without the ith row and jth column.

Basically when n = 2, det(A) = a11a22 − a12a21

Useful Property 1:

∇X log detX =
∂ log detX

∂X
= X−1

det(A) = det(AT)

det(aA) = an det(A)

det(AB) = det(A) det(B)

det(I) = det(AA−1) = det(A) det(A−1) = 1

det(A) =
1

det(A−1)

det(BAB−1) = det(A)

det(B−1AB − λI) = det(A− λI)

det(A) = det(A)

det(A+ εI) = 1 + εdet(A) +O(ε2)

where a refers to complex conjugate of a (no matter a number or matrix).

Could refer to mathworld at http://mathworld.wolfram.com/Determinant.html.

2.2.9 Matrix Trace

tr(A) =
n∑
i=1

aii

• tr(A) = tr(AT)

• tr(A+B) = tr(A) + tr(B)

14

http://mathworld.wolfram.com/SingularMatrix.html
http://mathworld.wolfram.com/SingularMatrix.html
http://mathworld.wolfram.com/Determinant.html

• tr(αA) = α tr(A)

• tr(BAB−1) = tr(A)

• tr(AB) = tr(BA)

Useful Property 0:

Inner product of two symmetric matrices is the trace of the product:{
A ∈ Sn

B ∈ Sn
=⇒ AB = tr(AB)

Useful Property 1:

tr(XTY) = tr(XY) =
∑
i,j

XijYij = vec(X)T vec(Y)

Useful Property 2:
∇X tr(AX) = A

Could refer to mathworld at http://mathworld.wolfram.com/MatrixTrace.html.

2.2.10 Eigen Decomposition

Could refer to mathworld at http://mathworld.wolfram.com/EigenDecomposition.
html. Another reference at https://www.utdallas.edu/~herve/Abdi-EVD2007-pretty.
pdf.

2.2.11 Positive Semi-Definite Matrix

X ∈ Sn+, ∀y ∈ Rn, yTXy ≥ 0 ⇐⇒ X � 0

Basically:

• The diagonal values of X (Xii) have to be ≥ 0.

• The element with largest modulus lies on the main diagonal.

• The determinant of X, det(X) ≥ 0.

• Xii +Xjj ≥ 2|R[Xij]|, ∀i 6= j, where R[· · ·] means the real part of a value.

Besides, when:

n = 1 X11 ≥ 0
n = 2 Xii ≥ 0, X11X22 −X2

12 ≥ 0

And iterative, for n+ 1 size, the conditions for size n still hold, by emitting any one
row & any one column. That is, their submatr

15

http://mathworld.wolfram.com/MatrixTrace.html
http://mathworld.wolfram.com/EigenDecomposition.html
http://mathworld.wolfram.com/EigenDecomposition.html
https://www.utdallas.edu/~herve/Abdi-EVD2007-pretty.pdf
https://www.utdallas.edu/~herve/Abdi-EVD2007-pretty.pdf

2.2.12 Positive Definite Matrix

Could refer to mathworld at http://mathworld.wolfram.com/PositiveDefiniteMatrix.
html.

2.2.13 Schur complement

X =

[
A B
C D

]
∈ R(p+q)×(p+q)

we have the Schur complement for A as:

S = X/A = D − CA−1B

and the Schur complement for D is:

S = X/D = A−BD−1C

Could refer to wikipedia at https://en.wikipedia.org/wiki/Schur_complement.

If we only care about the symmetric cases there’s many interesting properties.

X ∈ Sn partitioned as:

X =

[
A B
BT C

]
where A ∈ Sk.
Then the Schur (pronounced like “sure”) complement of A in X is:

S = C −BTA−1B

The time complexity computing it is in section 2.1.9.

Could refer to textbook page 650, A.5.5.

2.3 Calculus and Analysis

2.3.1 Differentiate

Some basic functions:

f(x) f ′(x)
xa axa−1

ex ex

ax ax ln(a)
ln(x) 1

x
x > 0

loga(x) 1
x ln(a)

sin(x) cos(x)
cos(x) − sin(x)
tan(x) sec2(x) = 1

cos2(x)
= 1 + tan2(x)

arcsin(x) 1√
1−x2

arccos(x) − 1√
1−x2

arctan(x) 1
1+x2

16

http://mathworld.wolfram.com/PositiveDefiniteMatrix.html
http://mathworld.wolfram.com/PositiveDefiniteMatrix.html
https://en.wikipedia.org/wiki/Schur_complement

• If f(x) = g(x)h(x):
f ′(x) = g′(x)h(x) + g(x)h′(x)

• If f(x) = h(g(x)):
f ′(x) = g′(x)h′(g(x))

f ′′(x) = g′(x)2h′′(g(x)) + h′(g(x))g′′(x)

2.3.2 Conjugation

φx(g) = xgx−1

φx(g)φx(h) = φx(gh)

Could refer to mathworld at http://mathworld.wolfram.com/Conjugation.html.

2.3.3 Complex Conjugate

The complex conjugate of a complex number z = a+ bi is defined to be:

z = a− bi

Could refer to mathworld at http://mathworld.wolfram.com/ComplexConjugate.

html.

3 Course Concepts

3.1 Introduction

3.1.1 Mathematical Optimization and Convex Optimization

Optimization Problem:

minimize f0(x)

subject to fi(x) ≤ bi (i = 1, 2, . . . ,m)

where:

• x = (x1, . . . , xn) is optimization variables (a.k.a. decision variables)

• f0 is objective function (Rn → R)

• fi are constraint functions (Rn → R)

• x∗ optimal solution

17

http://mathworld.wolfram.com/Conjugation.html
http://mathworld.wolfram.com/ComplexConjugate.html
http://mathworld.wolfram.com/ComplexConjugate.html

Convex Optimization Problem:

minimize f0(x)

subject to fi(x) ≤ bi (i = 1, 2, . . . ,m)

where:

• Objective and constraint functions are convex

• Convexity:
fi(αx+ βy) ≤ αfi(x) + βfi(y)

with α + β = 1, α ≥ 0, β ≥ 0.

“The cord lies above the graph”.

– Affine functions3 satisfies this for always. Have 0 curvature.

– Have non-negative curvature for always.

• Generally speaking, no analytical solution.

• Reliable & efficient algorithms. Time complexity: max{n3, n2m,F}. F is the
cost of evaluating fi and their first and second derivatives

• Almost a technology

• Many problem could be transformed into a convex form (though might be hard
to recognize), and solve via convex optimization.

• does not always have an unique solution though

3.1.2 Least Square and Linear Programming

• most famous, most widely-used optimization problems

• both convex-optimization problems

Least square:
minimize ‖Ax− b‖2

2

where A ∈ Rk×n, x ∈ Rn, b ∈ Rk.

• The square norm of an affine function of x

• Affine function: linear plus constant, e.g. ATx− b

• Analytical solution: x∗ = (ATA)−1AT b

3Affine function: linear plus constant.

18

• Time complexity n2k in the worst case

• A mature technology (Gauss)

Linear Programming (LP):

minimize cTx

subject to aTi x ≤ bi, i = 1, 2, . . . ,m

where x, c, ai ∈ Rn, b ∈ Rm.

• No analytical formula of the solution

• Time complexity n2m if m ≥ n

• A mature technology (Fourier)

3.2 Convex Set

3.2.1 Empty Set

Empty set is regarded as convex set.

3.2.2 Affine Sets and Convex Sets

Affine Set:

Line through x1, x2: x = θx1 + (1− θ)x2 where θ ∈ R.

The affine set is the set that contains the line through any two distinct points in
the set.

The solution set of linear equations, {x|Ax− b = 0} is an affine set, and, conversely,
any affine set could be expressed as solution set of set of linear equations.

Convex Set:

Same idea as affine set except that instead of line, we talk about line segment.

Line segment through x1, x2: x = θx1 + (1− θ)x2 where θ ∈ [0, 1].

Convex set contains the line segment through any two distinct points in the set.

x1, x2 ∈ C, θ ∈ [0, 1] =⇒ x = θx1 + (1− θ)x2 ∈ C

“any point in the set can see any other point in the set, through a clear
line of sight path in between”

19

3.2.3 Convex Combination and Convex Hull

Convex Combination: We have k points x1, x2, . . . , xk, convex combination refers
to any x of the form:

x = θ1x1 + θ2x2 + . . . θkxk

where θ1 + θ2 + · · ·+ θk = 1, and θi ≥ 0.

One view: mixture coefficients θ, x the mixture.

Convex Hull:

conv(S): Set of all convex combinations of points in S.

3.2.4 Conic combination and Convex Cone

Conic (non-negative) combination (of x1, x2):

Any point of the form x = θ1x1 + θ2x2 where θ � 0 (θ1, θ2 ≥ 0).

Convex Cone:

Set that contains all conic combinations of points in the set.

3.2.5 Hyperplane and Halfspace (example 1 of convex set)

Hyperplane: Affine and Convex!

Set of the form:
{x|aTx = b} (a 6= 0)

The shape looks like: a normal to the hyperplane is a, and then x is pointing to
“right-hand side” along the boundary. When b is changed, the hyperplane moves up
and down, parallel.

The distance between two parallel line with parameter b1 and b2 respectively, is
|b1−b2|
‖a‖2

Halfspace: Convex!

{x|aTx ≤ b} (a 6= 0)

The half of the space that a is pointing to is aTx > b, the half where −a will point
to is aTx < b. Boundary is the hyperplane. a is an outward normal.

20

3.2.6 Euclidean Balls and Ellipsoids (example 2 of convex set)

Euclidean Ball with center xc and radius r:

B(xc, r) = {x | ‖x− xc‖2 ≤ r}
= {xc + ru | ‖u‖2 ≤ 1}

where u is a vector of norm with length less than or equal to 1.

Euclidean refers to the `2 norm.

Ellipsoid: a generalization of ball.

{x | ‖(x− xc)TP−1(x− xc)‖2 ≤ 1}
={xc + Au | ‖u‖2 ≤ 1}

with P ∈ Sn++, symmetric positive definite. A: Non-square and Non-singular (linear
transformation A of a ball plus the offset xc).

The semiaxes of the ellipsoid are given by the eigenvectors of P . The semiaxis lengths
are the square roots of the eigenvalues of P .

When P = r2I it is a ball.

The representation of P is unique, that is to say, when two sets are equal the P has
to be the same.

But the representation of A is not unique, multiple As might give the same set. For
example, if Q is orthogonal, which means that QTQ = I, then A could be replaced
by AQ.

3.2.7 Norm Balls and Norm Cones (example 3 of convex set)

Norm: ‖·‖, nothing but a function, just like absolute value in multiple dimensions.

• Positive Definiteness:

– Positive: ‖x‖ ≥ 0

– Definiteness: ‖x‖ = 0 ⇐⇒ x = 0

• ∀t ∈ R, ‖tx‖ = |t| ‖x‖

• Triangle Inequality: ‖x + y‖ ≤ ‖x‖+ ‖y‖

• ‖·‖ is general, unspecified norm

• ‖·‖symb is particular norm

‖x‖p = (
n∑
i=1

|xi|p)
1
p

21

• ‖x‖∞ = maxni=1 |xi|

Norm Ball: with center xc and radius r:

{x | ‖x− xc‖ ≤ r}

Convex.

Norm Cone:

{(x, t) | ‖x‖ ≤ t}

Convex.

Euclidean Norm Cone (Second-Order Cone):

{(x, t) | ‖x‖2 ≤ t}

Special case of norm cone, definitely convex.

3.2.8 Polyhedra (a.k.a. Polytopes) (example 4 of convex set)

Solution set of finite many inequalities and equalities.

Ax � b, Cx = d

A ∈ Rm×n, C ∈ Rp×n, x ∈ Rn, b ∈ Rm, d ∈ Rp.
It is the intersection of finite number of halfspaces and hyperplanes. Defined by each
row of A or C.

� in this 1-D case is equivalent with componentwise inequality.

3.2.9 Positive Semidefinite Cone (example 5 of convex set)

Denote Sn an n×n symmetric matrix, Sn+ positive semi-definite matrix ({X ∈ Sn|X �
0}), Sn++ positive definite matrix ({X ∈ Sn|X � 0}).
Sn+ is a convex cone.

For example: [
x y
y z

]
∈ R2

+

is a positive semidefinite cone. In fact, it is just a rotated second-order cone.

22

3.2.10 Operations that Preserve Convexity

How to prove that a set is convex?

Option 1 Fall back to the definition, proving that for ∀x1, x2 ∈ C and ∀θ ∈ [0, 1], θx1 +
(1− θ)x2 ∈ C.

In fact, it is good enough to show that the set is closed under
averaging, that is to say, let θ = 0.5 all the times and prove it will be
good enough to show that the set is convex.

Option 2 Show that C is obtained from simple convex sets by operations that preserve
convexity. (Imagine an expression tree this way.)

Operations that preserve convexity:

• Intersection: The intersection of any number of (finite or infinite) convex
sets is convex.

For example, if a set satisfies something for t in a range t ∈ [a, b], then
we could separate this problem into infinite sets each with a fixed t.

• Affine functions: f : Rn → Rm

f(x) = Ax+ b

with x ∈ Rn, b ∈ Rm, A ∈ Rm×n. Then:

– The image of a convex set under f is convex:

S ⊆ Rn =⇒ f(S) = {f(x)|x ∈ S} is convex

– The inverse image (f−1(C)) of a convex set under f is convex:

C ⊆ Rm =⇒ f−1(C) = {x ∈ Rn|f(x) ∈ C} is convex

Sometimes f−1 does not even exist, that is to say, f is not invertable, but this
operation still works, and the conclusion still holds.

Some examples include:

– Scaling, Transaction (move to another position), Rotation, Pro-
jection (e.g. simply reduce the dimension by ignoring some
dimensions, that is geographically like a shadow)

– Linear matrix inequality’s solution set:

{x | x1A1 + · · ·+ xmAm � B}

with Ai, B ∈ Sp. By having f : Rm → Sp:

f(x) = B −
m∑
i=1

xiAi

and use its inverse set.

23

– Hyperbolic cone:

{x | xTPx ≤ (cTx)2, cTx ≥ 0}

with P ∈ Sn+. It is an inverse image of a standard cone under an
affine function.

• Perspective (a.k.a. projective mapping) functions P : Rn+1 → Rn

P (x, t) = x/t, dom P = {(x, t)|t > 0}

basically, it is dividing the first n element with the last one.

Images and inverse images under perspective are convex.

• Linear-fractional functions f : Rn → Rm

f(x) =
Ax+ b

cTx+ d
, dom f = {x | cTx+ d > 0}

It is just like the image put into your camera or your retina.

Images and inverse images under linear-fractional functions are
convex.

A quick example:

f(x) =
x

x1 + x2 + 1

where x ∈ R2.

3.2.11 Generalized Inequalities

A convex cone K ⊆ Rn is a proper cone if:

• K is closed (contains its boundary)

• K is solid (has no empty interior, a shape not a line segment)

• K is pointed (contains no line, can’t have a ray and its negative together in a
proper cone)

Some examples include: nonnegative orthant K = Rn+, positive semidefinite cone
K = Sn+, non-negative polynomials on [0, 1]:

K = {x ∈ Rn | x1 + x2t+ x3t
2 + · · ·+ xnt

n−1 (t ∈ [0, 1])}

Generalized inequality (based on a proper cone K):

x �K y ⇐⇒ y − x ∈ K
x ≺K y ⇐⇒ y − x ∈ int K

int here refers to interior, that is the inner part, not the boundary.

Some way-too-common (so that we drop the K when expressing) examples:

24

• K = R+ (not really generalized, just the basis, used for comparison):

x �K y ⇐⇒ y − x ∈ K

x �R+ y ⇐⇒ y − x ∈ R+

x ≤ y ⇐⇒ y − x ≥ 0

• K = Rn+:
x �K y ⇐⇒ y − x ∈ K

x �Rn
+
y ⇐⇒ y − x ∈ Rn+

x � y ⇐⇒ yi − xi ≥ 0 (i = 1, 2, . . . n)

• K = Sn+:
x �K y ⇐⇒ y − x ∈ K

x �Sn+ y ⇐⇒ y − x ∈ Sn+
x � y ⇐⇒ y − x positive semidefinite

Some properties that are kept similar with that on R:

• x �K y, a � b =⇒ (x+ a) � (y + b)

Some properties are not the same with R:

• It is not generally a linear ordering, we can have x �K y and y �K x at the
same time.

3.2.12 Minimum and Minimal elements of Generalized Inequality

Minimum Element:

x ∈ S is the minimum element of S with respect to �K if:

y ∈ S =⇒ x �K y

Minimal Element:

x ∈ S is a minimal element of S with respect to �K if:

y ∈ S, y � x =⇒ y = x

25

3.2.13 Separating Hyperplanes and Supporting Hyperplanes

Separating Hyperplane Theorem:

Theorem. If C and D are disjoint convex sets, then there must exists a 6= 0, b such
that aTx ≤ b for x ∈ C, and aTx ≥ b for x ∈ D.

The division line aTx = b has a norm a pointing to D side.

Strict separation requires additional assumptions. (e.g. C is closed, D is singleton)

It means that, there’s a linear classifier that will distinguish C and D.

Supporting Hyperplane Theorem:

The basic idea is if you have a hyperplane that touches the set but not going into it,
as if the hyperplane is holding the set, that is supporting.

Supporting hyperplane to set C at point x0:

{x | aTx = aTx0}

Theorem. If C is convex, then there exists a supporting hyperplane at every
boundary point of C.

But the supporting hyperplane of C at x0 is not necessarily uniquely defined - imagine
a corner of a square, for example.

3.2.14 Dual Cones and Generalized Inequalities

Dual cone of a cone K:

K∗ = {y | yTx ≥ 0, ∀x ∈ K}

Some examples:

K K∗

R∗+ R∗+
S∗+ S∗+

{(x, t)|‖x‖2 ≤ t} {(x, t)|‖x‖2 ≤ t}
{(x, t)|‖x‖1 ≤ t} {(x, t)|‖x‖∞ ≤ t}

The first three are self-dual cones.

Dual cones for proper cones are proper. Hence define generalized inequalities:

y �K∗ 0 ⇐⇒ yTx ≥ 0 for all x �K 0

The dual cone, geographically, is: starting from the boundary, the “original point”
(o) of the set, draw a hyperplane, with norm y, if the set is fully included in the
halfspace where y points to, then y ∈ K∗.
If K is thin, then K∗ is thick. Normally, if K is “90 degrees”, then it is self-dual. Also
normally, (K∗)∗ is K. For example, x ∈ R, then for K = {(x, t)||x| ≤ t}, K∗ = K.

26

3.2.15 Minimum and Minimal Elements via Dual Inequalities

minimum element w.r.t. �K

x is the minimum element of S ⇐⇒ ∀λ �K∗ 0, x is the unique minimizer of λT z over S

minimal element w.r.t. �K

x is minimal of S ⇐⇒ ∃λ �K∗ 0, x minimizes λT z over S

That is, geographically, all points where, from that point, the line segments (in right
angle) to any of the axis, doesn’t have intersection with the rest of the set.

Optimal Production Frontier

Different production methods use different amount of resources x ∈ Rn.

P : The production set. Resource vector x for all possible production methods.

Efficient (Pareto optimal) methods correspond to resource vectors x that are
minimal w.r.t. Rn+.

3.3 Convex Function

3.3.1 Definition

f : Rn → R is convex iff:

• dom f is a convex set

• ∀x, y ∈ dom f, θ ∈ [0, 1]:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

• And strictly-convex is defined as:

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for ∀x, y ∈ dom f, θ ∈ (0, 1).

We also know that:

• f is concave if −f is convex, f is convex if −f is concave.

• The line segment in the graph space (from x to y) is sometimes called chord.
An old way of talking about convexity is saying that f is below its chord.

27

3.3.2 Convex and Concave Examples

Some examples on R we have for convex and concave (in respect to x):

name expression restrictions convex concave
affine ax+ b x, a, b ∈ R
exponential eax x, a ∈ R
powers xα x ∈ R++ (x > 0), α ∈ (−∞, 0] ∪ [1,∞)
powers xα x ∈ R++ (x > 0), α ∈ [0, 1]
power of |·| |x|α x ∈ R, α ≥ 1
negative
entropy

x log x x ∈ R++ (x > 0)

logarithm log x x log x x ∈ R++ (x > 0)

Some examples on x ∈ Rn we have for convex and concave:

name expression restrictions convex concave
affine f(x) = aTx+ b x, a, b ∈ Rn
norms f(x) = ‖x‖p x ∈ Rn, p ≥ 1

Some examples on x ∈ Rm×n we have for convex and concave:

name expression restrict convex concave
affine f(X) = tr(ATX) + b =

∑m
i=1

∑n
j=1AijXij + b X,A ∈

Rm×n,
b ∈ R

spectral
norm

f(X) = ‖X‖2 = σmax(X) = (λmax(X
TX))1/2 X ∈ Rm×n

Spectral norm is also known as maximum singular value norm.

3.3.3 Trick 1: Restriction of a convex function to a line

f is convex only g is convex:

g(t) = f(x+ tv), dom g = {t | x+ tv ∈ dom f, x ∈ dom f, v ∈ Rn}

with f : Rn → R, g : R→ R.

It is also true statement for concave cases.

If, for any choice of x and v, g is always convex (/concave) in t, then f
must be convex (/concave) as well.

28

It is useful in high dimensions when n is large, and you can check the convexity of f
by checking convexity of a line. If you can find a sample that does not hold, then it
is definitely not convex.

An example: dom f = Sn++, f : Sn → R, and it is the log-determinant:

f(X) = log detX

We could have:

g(t) = log det(X + tV)

= log det
(
X1/2(I + tX−1/2V X−1/2)X1/2

)
= log det(X) + log det(I + tX−1/2V X−1/2)

= log det(X) +
n∑
i=1

(1 + tλi)

where λi are the eigenvalues of (X−1/2V X−1/2).

For any choice of X � 0, and V , g is always concave on t, thus f is concave as well.

3.3.4 Trick 2: Extended-value extension

An extended-value extension of f is denoted as f̃ , defined as:

f̃(x) =

{
f(x) x ∈ dom f

∞ x /∈ dom f

This extension often simplifies the notation. Most of the operations on infinity work
out fine.

3.3.5 Trick 3.1: First-Order Condition

f is differentiable iff:

• dom f is open (end-points not included)

• There exists ∇f(x) at each x ∈ dom f such that:

∇f(x) = (
∂f(x)

∂x1

,
∂f(x)

∂x2

, . . . ,
∂f(x)

∂xn
)

The first-order condition refers to that:

If f is first-order differentiable, then it is convex iff:

f(y) ≥ f(x) +∇f(x)T (y − x)

holds for all x, y ∈ dom f .

In other words, a convex function’s first-order approximation is a global
underestimator.

29

3.3.6 Trick 3.2: Second-Order Conditions

f is twice differentiable iff:

• dom f is open (end-points not included)

• There exists the Hessian ∇2f(x) ∈ Sn at each x ∈ dom f such that:

∇2f(x)ij =
∂2f(x)

∂xi∂xj

for i, j = 1, 2, . . . , n.

The second-order conditions refer to that:

If f is second-order differentiable, then it is convex iff:

∇2f(x) � 0

holds for all x ∈ dom f .

And if it is ∇2f(x) � 0 in stead of ∇2f(x) � 0, then f is strictly
convex. But a function could be strictly convex without having
∇2f(x) � 0.

Some examples:

name f(x) ∇f(x) ∇2f(x) convex
condition

quadratic 1
2
xTPx + qTx + r

(P ∈ Sn)
Px+ q P P � 0

least-
squares
objective

‖Ax− b‖2
2 2AT (Ax− b) 2ATA always

convex

quadratic
ove linear

f(x, y) = x2

y
(y > 0) ∇2f(x, y) =

2
y3

[
y
−x

] [
y
−x

]T ∇2f(x, y) �
0

log-sum-
exp

log
∑n

i=1 expxi
1

1
T z diag z

− 1
(1T z)2

zzT

(zk = expxk)

always
convex

geometric
mean

(
∏n

i=1 xi)
1/n, x ∈

Rn++

always
concave

Proof of that the log-sum-exp is convex:

To show that:

∇2f(x) =
1

1
T z diag z

− 1

(1T z)2
zzT � 0

30

We need to prove that, ∀v:

vT (∇2f(x))v =
(
∑

k zkv
2
k)(
∑

k zk)− (
∑

k zkvk)
2

(
∑

k zk)
2

≥ 0

According to the CauchySchwarz Inequality (See 4.2.1), we have:

(
∑
k

zkv
2
k)(
∑
k

zk) ≥ (
∑
k

zkvk)
2

So it always holds.

And the proof of that the geometric mean is concave is alike.

The log-sum-exp is very important because:

• It has physics meaning of DB combining

• It is the smooth approximation of a maximum, a.k.a. soft-max!

3.3.7 Epigraph and Sublevel Set

Epigraph is what connects the convex sets and the convex
functions.

α-sublevel set of f : Rn → R:

Cα = {x ∈ dom f | f(x) ≤ α}

epigraph of f : Rn → R:

epi f = {(x, t) ∈ Rn+1 | x ∈ dom f, f(x) ≤ t}

f is convex ⇐⇒ epi f is a convex set.

Plus, there are some other conclusions:

• epi f is a halfspace ⇐⇒ f is affine.

• epi f is a convex cone ⇐⇒ f is convex and positively homogeneous,
i.e., f(αx) = αf(x) for any α ≥ 0 and any x.

• epi f is a polyhedron ⇐⇒ f is convex and piecewise-affine.

If you have a convex function, the sublevel sets are all convex. But if you have a
convex sublevel set, you can’t say for sure whether or not the function is convex.

31

3.3.8 Jensen’s Inequality

Refer to subsection 4.2.2 for more details.

Note that, the basic inequality (which is exactly the definition of convexity, and it is
called Jensen’s Inequality):

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

is a special case of:
f(Ez) ≤ Ef(z)

3.3.9 Brief Summary: How to prove convexity?

• Verify definition. If the function is complex, simplify it by restricting it to a
line.

• If the function f is twice-differentiable, examine ∇2f .

• Show that f is obtained from some known convex functions by certain
operations (the operations that preserve convexity).

3.3.10 Operations that Preserve Convexity

Operations know to preserve convexity are:

1. Nonnegative weighted sum:∑
αifi is convex if αi ≥ 0 and fi are convex.

Proof:

• nonnegative multiple: α ≥ 0, f is convex, then αf is convex

• sum:
∑
fi is convex if all fi are convex

Example: log barrier for linear inequalities:

f(x) = −
m∑
i=1

log(bi − aTi x)

where dom f = {x | aTi x < b, i = 1, 2, . . . ,m}

2. Composition with affine function:

f(Ax+ b) is convex when f is convex and Ax+ b ∈ dom f .

Example: any norm of affine function is convex.

32

3. Pointwise maximum and pointwise supremum:

Pointwise maximum: if f1, . . . , fm are convex, then:

f(x) = max{f1(x), f2(x), . . . , fm(x)}

is convex.

Examples:

• piecewise-linear function is convex:

f(x) = max
i=1,...m

(aTi x+ bi)

• sum of r largest components of x ∈ Rn (r ≤ n) is convex:

f(x) =
r∑
i=1

x[i]

where x[i] is the ith largest component in x.

(Proved by viewing f as the maximum of the sum of random r elements in
x.)

Note that the pointwise maximum does not preserve differenciability.

Actually in convex optimization, differenciability does not play a very important
role. This is not gonna be a calculus class. Rather, linear algebra is more
important.

Pointwise supremum: if f(x, y) is convex in x for ∀y ∈ A, then:

g(x) = sup
y∈A

f(x, y)

is convex.

Examples:

• support function of a set C is convex:

SC(x) = sup
y∈C

yTx

• distance to farthest point in a set C is convex:

f(x) = sup
y∈C
‖x− y‖

• maximum eigenvalue of symmetric matrix, for X ∈ Sn:

λmax(X) = sup
‖y‖2=1

yTXy

33

4. Composition with scalar functions:

f is the composition of g : Rn → R and h : R→ R:

f(x) = h(g(x))

f is convex if: {
g convex, h convex, h̃ nondecreasing

g concave, h convex, h̃ nonincreasing

where h̃ is the extended-value extension of h (see 3.3.4).

To get the intuitive idea we might have a look at the case where n = 1, see 2.3.1
for more details:

f ′′(x) = g′(x)2h′′(g(x)) + h′(g(x))g′′(x)

Note that monotonicity (nondecreasing or nonincreasing) must hold for h̃.

Examples:

• exp g(x) is convex if g is convex

• 1
g(x)

is convex if g is positive and concave

5. Vector Composition:

f is the composition of g : Rn → Rk and h : Rk → R:

f(x) = h(g(x)) = h(g1(x), g2(x), . . . , gk(x))

f is convex if:{
gi convex, h convex, h̃ nondecreasing in each argument

gi concave, h convex, h̃ nonincreasing in each argument

where h̃ is the extended-value extension of h (see 3.3.4).

Similarly we have when n = 1 and g, h both differentiable:

f ′′(x) = g′(x)T (∇2h(g(x)))g′(x) +∇h(g(x))Tg′′(x)

Examples:

• log
∑m

i=1 exp gi(x) is convex if gi are convex (choose h to be the log-sum-exp
function)

•
∑m

i=1 log gi(x) is concave if gi are concave and positive

34

6. Minimization (a.k.a. Partial Minimization):

if f(x, y) is convex in (x, y) and C is a convex set, then:

g(x) = inf
y∈C

f(x, y)

is convex.

Note that the conditions are stronger (more restrictions) than the maximum
and supremum case. It has to be jointly-convex in minimum.

Examples:

• f(x) = xTAx+ 2xTBy + yTCy, with:

C � 0,

[
A B
BT C

]
� 0

Minimizing over y gets:

g(x) = inf
y
f(x, y) = xT (A−BC−1BT)x

g is convex, hence the Schur complement (A−BC−1BT) � 0.

• distance to a set:
dist(x, S) = inf

y∈S
‖x− y‖

is convex if S is convex.

7. Perspective:

The perspective g : Rn × R→ R of a function f : Rn → R,

g(x, t) = tf(x/t), dom g = {(x, t) | t > 0, x/t ∈ dom f}

is convex if f is convex.

Examples:

• f(x) = xTx is convex, so for t > 0, g(x, t) = xT x
t

is convex

• negative logarithm f(x) = − log x is convex, hence the relative entropy :

g(x, t) = t log t− t log x

is convex on R2
++.

• for any convex f ,

g(x) = (cTx+ d)f(
Ax+ b

cTx+ d
)

is convex on domain:

dom g = {x | cTx+ d > 0,
Ax+ b

cTx+ d
∈ dom f}

35

3.3.11 The Conjugate Function

The conjugate of a function f is defined as:

f ∗(y) = sup
x∈dom f

(yTx− f(x))

The conjugate function f∗ of any
function f is convex, even if f is not.
On a 2D plane it looks like: the value of a function’s conjugate at a certain y0 is the
negative of b (the intersection with y axis) for line y = yT0 x+ b, when the line serves
as a tangent line.

Examples:

1. negative logarithm:
f(x) = − log x

f ∗(x) = sup
x>0

(xy + log x)

=

{
−1− log(−y) y < 0

∞ otherwise

2. strictly-convex quadratic with Q ∈ Sn++ (easily calculate by that it is
differentiable):

f(x) =
1

2
xTQx

f ∗(x) = sup
x

(yTx− 1

2
xTQx)

=
1

2
yTQ−1y

Reference: https://www.encyclopediaofmath.org/index.php/Conjugate_function

3.3.12 Quasiconvex Functions (1/3 Generalization)

Definition: f : Rn → R is quasiconvex if:

• dom f is convex set;

• the sublevel sets:
Sα = {x ∈ dom f | f(x) ≤ α}

are convex for all α.

There are some properties:

36

https://www.encyclopediaofmath.org/index.php/Conjugate_function

• f is quasiconcave if −f is quasiconvex

• f is quasilinear if it is quasiconvex and quasiconcave

It justifies the idea of unimodal, like, we can’t have two “bumps”.

function domain quasiconvex quasiconcave quasilinear√
|x| R

ceil(x) R
log x R++

f(x) = x1x2 R2
++

f(x) = 1
x1x2

R2
++ (convex)

f(x) = x1
x2

R2
++

linear fractional function
f(x) = aT x+b

cT x+d

dom f =
{x|cTx+ d > 0}

distance ratio f(x) =
‖x−a‖2
‖x−b‖2

dom f =
{x|‖x − a‖2 ≤
‖x− b‖2}

A real-life example: internal rate of return4.

Important properties of quasiconvex functions:

1. modified Jensen inequality: f is quasiconvex, then,

θ ∈ [0, 1] =⇒ f(θx+ (1− θ)y) ≤ max{f(x), f(y)}

which means that, instead of “below the chord”, it goes below the “box”.

2. first-order condition:

if f is

• differentiable

• dom f is convex set

then it is quasiconvex iff

f(y) ≤ f(x) =⇒ ∇f(x)T (y − x) ≤ 0

in other words, it is like another way of describing the general idea that “it is a
collection of centered, cascade shapes” or something alike.

3. sums of quasiconvex functions are not necessarily quasiconvex

Do not care too much about the function f , think about f ≥ α or f ≤ α directly.

4See the lecture note for convex functions for more details.

37

3.3.13 Log-concave and Log-convex Functions (2/3 Generalization)

Log-concave

A positive function f is log-concave =⇒ log f is concave:

log f(θx+ (1− θ)y) ≥ θ log f(x) + (1− θ) log f(y)

f(θx+ (1− θ)y) ≥ f(x)θf(y)1−θ

Log-convex

A positive function f is log-convex =⇒ log f is convex:

log f(θx+ (1− θ)y) ≤ θ log f(x) + (1− θ) log f(y)

f(θx+ (1− θ)y) ≤ f(x)θf(y)1−θ

It is not a simple extension. And it happens to be that most of the interesting cases
are log-concave.

Examples:

• powers: xα on R++, when α ≥ 0 it is log-concave, when α ≤ 0 it is log-convex.

• normal (and many other common probability densities):

f(x) =
1√

(2π)n det Σ
e−

1
2

(x−x)T Σ−1(x−x)

• cumulative Gaussian distribution function (Φ):

Φ(x) =
1√
2π

∫ x

−∞
e−

u2

2 du

Properties of Log-concave Functions

1. If f is:

• twice-differentiable

• with convex domain

then it is log-concave iff:

f(x)∇2f(x) � ∇f(x)∇f(x)T

for all x ∈ dom f .

2. product of log-concave functions is log-concave:

equivalent with that, the sum of concave functions is concave function.

38

3. sum of log-concave functions is not always log-concave:

it means that the mixture distribution, with log-concave distributions, is not
always log-concave.

4. integration: if f : Rn × Rm → R is log-concave, then,

g(x) =

∫
f(x, y)dy

is log-concave.5

Important Consequences of the Integration Property:

1. convolution of log-concave functions is log-concave:

convolution of functions f and g is h = f ∗ g:

h(x) = (f ∗ g)(x) =

∫
f(x− y)g(y)dy

then if f , g are log-concave functions, h is log-concave.

2. (before taking the log, sometimes called “the yield function” etc.) if:

• C ∈ Rn is a convex set

• y is a random variable with log-concave pdf, 6

then,
f(x) = prob(x+ y ∈ C)

is log-concave.

Could be proved by (denote the pdf of y as p(y)):

f(x) =

∫
g(x+ y)p(y)dy, g(u) =

{
1 u ∈ C
0 u /∈ C

More concretely, the yield function:

Y (x) = prob(x+ w ∈ S)

• S ∈ Rn is a convex set of acceptable values

• x ∈ Rn are the nominal parameter values for product

• w ∈ Rn is a random variable with log-concave pdf, random variations of
parameters in manufactured product

then:

• Y is log-concave

• yield regions {x|Y (x) ≥ α} are convex

Note some strong asymmery here in these cases. e.g. You want to maximize something
when don’t care about minimization at all.

5And this is hard to show.
6pdf = Probability Distribution Function

39

3.3.14 Convexity with respect to Generalized Inequalities (3/3 General-
ization)

This is the idea of generalizing it to the vector values.

That is, with a cone K, and f : Rn → Rm, we define the conditions of being K-
convex as:

• dom f is convex set

• ∀x, y ∈ dom f , θ ∈ [0, 1],

f(θx+ (1− θ)y) �K θf(x) + (1− θ)f(y)

An example is that, f : Rm → Rm, f(X) = X2 is Sm+ -convex.

3.4 Convex Optimization Problems

3.4.1 Optimization Problem in Standard Form

minimize f0(x)

subject to fi(x) ≤ 0 (i = 1, 2, . . . ,m)

hi(x) = 0 (i = 1, 2, . . . , p)

where the optimal value p∗ (the inferior 7 value of f0(x) under all those constraints)
is an ordinary value if the problem is bounded and feasible, is∞ when not feasible (no
x satisfies the constraints, the feasible set is empty), −∞ if the problem is unbounded
below (can reach any smaller number).

Some explanation:

element range meaning
x Rn optimization variable / decision variable
f0 Rn → R objective function / cost function
fi Rn → R the inequality constraint functions
hi Rn → R the equality constraint functions

Some concepts:

• x is feasible if:

– x ∈ dom f0

– x satisfies the constraints

• x is optimal if:

7It is inferior, not minimum or minimal.

40

– x is feasible

– f0(x) = p∗

and we denote the set of optimal points as Xopt.

• x is locally optimal if, ∃R > 0 such that x is optimal for the problem:

minimize f0(x)

subject to fi(x) ≤ 0 (i = 1, 2, . . . ,m)

hi(x) = 0 (i = 1, 2, . . . , p)

‖z − x‖2 ≤ R

And quite naturally, we have some implicit constraints for the standard form
optimization problem:

x ∈ D =
m⋂
i=1

dom fi

p⋂
i=1

domhi

and D is called the domain of the problem.

By the way, fi(x) ≤ 0 and hi(x) = 0 are explicit constraints. And if there’s no
explicit constraint, the problem is unconstrained.

Note that:

• inf(0, 1] = 0, sup[0, 1) = 1

• inf ∅ = −∞, sup∅ =∞

• minimize (part of the optimization problem, keyword that introduces an
attribute of the optimization object) is not minimum (min, a function, who
takes a bunch of variables and compare them, select the smallest value), they
have totally different meanings.

We have feasibility problems, defined as:

find x

subject to fi(x) ≤ 0 (i = 1, 2, . . . ,m)

hi(x) = 0 (i = 1, 2, . . . , p)

and it is equivalent with a special case of the general optimization problem where
f0(x) = 0, then p∗ = 0 when feasible, p∗ = ∞ when infeasible. (Any x is optimal in
this case.)

41

3.4.2 Convex Optimization Problems

minimize f0(x)

subject to fi(x) ≤ 0 (i = 1, 2, . . . ,m)

hi(x) = 0 (i = 1, 2, . . . , p)

where f0 and all fi (inequality constraints) are convex functions; and all hi are
affine (in the form of aTi x− bi = 0).

The problem is quasiconvex if:

• f0 is quasiconvex;

• fi (i = 1, 2, . . . ,m) are convex.

It is often written as:

minimize f0(x)

subject to fi(x) ≤ 0 (i = 1, 2, . . . ,m)

Ax = b (A ∈ Rp×n)

Note that there’s an important property: the feasible set of a convex optimization problem
is convex. A convex optimization problem might be viewed as minimizing a convex
function over a convex set in some abstract cases, but not strictly this way.

Also note that sometimes even if a problem is not a convex optimization problem, it
could have an equivalent expression that is convex optimization problem.

For example, an optimization problem that is significantly not convex:

minimize x2
1 + x2

2

subject to x1/(1 + x2)2 ≤ 0

(x1 + x2)2 = 0

is equivalent (although not identical8) to convex optimization problem:

minimize x2
1 + x2

2

subject to x1 ≤ 0

x1 + x2 = 0

Any local optimal point of a convex problem (globally) optimal.

It basically tells us that, if you find an optimal point and you know it is a convex
optimization problem, then this point you found is globally optimal.

8Identical means exactly itself.

42

It could be proved by the definition of local optimal with radius R and optimal point
x, neighbor feasible point z within the distance of R; having another y that might
locates far away and together with:

z = θy + (1− θ)x, θ =
R

2‖y − x‖2

and let y be a global optimal point with f0(y) smaller than f0(x), then there’s a
conflict in comparing z’s f0 value with x’s.

Optimality Criterion for Differentiable f0:

x is optimal when f0 is differentiable ⇐⇒ :

• x is feasible

• ∀y, if y is feasible:
∇f0(x)T (y − x) ≥ 0

If nonzero, ∇f0(x) defines a supporting hyperplane for the feasible set X at point
x, with −∇f0(x) being the outward norm. In general:

• unconstrained problem:

minimize f0(x)

then:

x is optimal ⇐⇒

{
x ∈ dom f0

∇f0(x) = 0

• equality-constrained problem:

minimize f0(x)

subject to Ax = b

then:

x is optimal ⇐⇒


x ∈ dom f0

Ax = b

∇f0(x) + ATv = 0

• minimization over nonnegative orthant:

minimize f0(x)

subject to x � 0

then:

x is optimal ⇐⇒


x ∈ dom f0

x � 0{
∇f0(x)i ≥ 0 xi = 0

∇f0(x)i = 0 xi > 0

43

Here naturally comes the definition of the Equivalent Convex Problems.

Two problems are (informally) equivalent if the solution of one is readily
obtained from the other, and vice versa.

For example:

• eliminating the equality constraints of:

minimize f0(x)

subject to fi(x) ≤ 0, (i = 1, 2, . . . ,m)

Ax = b

we have:
minimize f0(Fz + x0)

subject to fi(Fz + x0) ≤ 0, (i = 1, 2, . . . ,m)

where we have:
x = Fz + x0 ⇐⇒ Ax = b for some z

is the solution of Ax = b.

• introducing equality constraints to:

minimize f0(A0x+ b0)

subject to fi(Aix+ bi) ≤ 0, (i = 1, 2, . . . ,m)

we have that:

minimize f0(y0)

subject to fi(yi) ≤ 0, (i = 1, 2, . . . ,m)

yi = Aix+ bi, (i = 0, 1, 2, . . . ,m)

• introducing slack variables for linear inequations to:

minimize f0(x)

subject to aTi x ≤ bi, (i = 1, 2, . . . ,m)

we have that:
minimize f0(x)

subject to aTi x+ si = bi, (i = 1, 2, . . . ,m)

si ≥ 0, (i = 0, 1, 2, . . . ,m)

• epigraph form (very important!): from any standard form convex problem,
we have it equivalent with:

minimize t (minimizing over x, t)

subject to f0(x)− t ≤ 0

fi(x) ≤ 0 (i = 1, 2, . . . ,m)

Ax = b

44

• partial minimization (minimizing over some variables):

minimize f0(x1, x2)

subject to fi(x) ≤ 0 (i = 1, 2, . . . ,m)

is equivalent to:
minimize f̃0(x1)

subject to fi(x) ≤ 0 (i = 1, 2, . . . ,m)

where we have:
f̃0(x1) = inf

x2
f0(x1, x2)

3.4.3 Quasiconvex Optimization

minimize f0(x)

subject to fi(x) ≤ 0

Ax = b

with f0 : Rn → R quasiconvex, f1, . . . , fm convex.

Feature: can have locally optimal points that are not (globally) optimal.

Recall the definition of quasiconvex functions, we have that f0(x) ≤ t is t-sublevel set
of f0, and its domain is convex set. Having t-sublevel set if f0 denoted as 0-sublevel
set of φt, which means:

f0(x) ≤ t ⇐⇒ φt(x) ≤ 0

and for each fixed t, φt(x) is convex in x.

We define the family of function φt such that:

• φt(x) is convex in x for fixed t

• t-sublevel set if f0 is 0-sublevel set of φt

A quasiconvex optimization problem could be solved via convex feasibility
problems (recall that convex feasibility problems are convex optimization problems
as well): 9

φt(x) ≤ 0, f0(x) ≤ 0, Ax = b

for any fixed t, if it is feasible, then p∗ ≤ t, if infeasible, on the other hand, p∗ ≥ t.
Using binary search method, and set the allowed epsilon (difference between upper,
lower bounds) being ε, requires dlog2(u−l

ε
)e iterations to converge, where u and l are

the upper and lower bound at the very beginning. This process is called bisection.

9Recall that there’s code implementation in homework for this sort of problems.

45

3.4.4 Linear Optimization (LP)

Every convex function can be well approximated by a piecewise-
linear function.

A linear program (LP) could have:

• none

• one

• infinite Many

solutions.

Linear programs with fewer constraints than variables are NOT guaranteed to be
feasible.

Linear Program (LP)
minimize cTx+ d

subject to Gx � h

Ax = b

it is convex problem with affine objective and constraint functions.

Its feasible set is always polyhedron.

In fact, d could be removed without influencing the solutions. x∗ is always at an
angle of the feasible set, and −c points outward from x∗.

LP could be solved extremely fast, with total reliability.

Examples:

• piecewise linear minimization =⇒ LP:

minimize max
i=1,2,...m

(aTi x+ bi)

is equivalent with,

minimize t

subject to aTi x+ bi ≤ t (i = 1, 2, . . . ,m)

• Chebyshev center of a polyhedron:

P = {x|aTi x ≤ bi, i = 1, 2, . . . ,m}

which is the center of the largest inscribed ball: 10

B = {xc + u|‖u‖2 ≤ r}
10It means that the ball is the largest ball inside the shape of the set.

46

and we have:
aix ≤ bi (∀x ∈ B)

⇐⇒ sup{aTi (xc + u)|‖u‖2 ≤ r}
= aTi xc + r‖ai‖2

≤ bi

thus this whole problem could be solved by solving the LP:

minimize r

subject to aTi xc + r‖ai‖2 ≤ bi (i = 1, 2, . . . ,m)

Linear-fractional Program

minimize f0(x) =
cTx+ d

eTx+ f

subject to Gx � h

Ax = b

where
dom f0 = {x|eTx+ f > 0}

It is a significant sort of generalization of LP. A kind of quasiconvex problem. It is
also equal to LP with variables y, z:

minimize cTy + dz

subject to Gy � hz

Ay = bz

eTy + fz = 1

z ≥ 0

Generalized Linear-fractional Program

minimize f0(x) = max
i=1,2,...m

cTi x+ di
eTi x+ fi

subject to Gx � h

Ax = b

where
dom f0 = {x|eTi x+ fi > 0 (i = 1, 2, . . . , r)}

is also a quasiconvex problem solvable by bisection.

Robust Linear Programming is described in QP (3.4.5) part.

47

3.4.5 Quadratic Optimization (QP, SOCP, QCQP)

Non-affine problems.

Quadratic Program (QP)

minimize
1

2
xTPx+ qTx+ r

subject to Gx � h

Ax = b

where P ∈ Sn+, thus objective function is convex quadratic.

Note that 1
2
xTPx+ qTx+ r is guaranteed convex only when P ∈ Sn+.

In the polyhedron feasible set, the x∗ always lies on an edge, with −∇f(x∗) be a norm
of the corresponding edge pointing outward of the feasible set. Level sets (α-sublevel
sets) are ellipsoids.

Examples:

• Least-Squares:
minimize ‖Ax− b‖2

2

with:

– analytical solution x∗ = A†b (A† is the pseudo-inverse);

– optional linear constraints l � x � u.

• Linear Program (LP) with Random Cost:

minimize cTx+ γxTΣx

= EcTx+ γvar(CTx)

subject to Gx � h

Ax = b

with:

– random vector c has mean c and covariance Σ (hence cTx has mean cTx
and covariance xTΣx)

– aversion parameter γ > 0, controls the trade-off between the expected cost
and risk (variation)

Quadratically Constrained Quadratic Program (QCQP)

minimize
1

2
xTP0x+ qT0 x+ r

subject to
1

2
xTPix+ qTi x+ r (i = 1, 2, . . .m)

Ax = b

where:

48

• Pi ∈ Sn+, thus objective and constraints are convex quadratic;

• If P1, P2, . . . , Pm ∈ Sn++, then the feasible region is intersection of m ellipsoids
and an affine set.

Note that, LP ⊆ QP ⊆ QCQP ⊆ SOCP .

Second-order Cone Programming (SOCP)

minimize fTx

subject to ‖Aix+ bi‖2 ≤ cTi x+ di (i = 1, 2, . . .m)

Fx = g

where:

• Ai ∈ Rni×n, F ∈ Rp×n;

• ‖Aix+ bi‖2 ≤ cTi x+ di are called second-order cone (SOC) constraints;

• (Aix+ bi, c
T
i x+ di) is in a second-order cone in Rni+1

• If ni = 0, it reduces to LP, if ci = 0, reduces to QCQP;

• LP ⊆ QP ⊆ QCQP ⊆ SOCP .

Robust Linear Programming

minimize cTx+ d

subject to aix ≤ bi, i = 1, 2, . . . ,m

How to handle uncertainty in c, ai, bi? Take ai as an example. Two common
approaches:

• deterministic model: constraints must hold for all ∀ai ∈ Ei:
minimize cTx+ d

subject to aix ≤ bi, ∀ai ∈ Ei, i = 1, 2, . . . ,m

a.k.a. “worst-case” model, to guarantee that it works in the worst cases.

Could be done via SOCP:

Ei = {ai + Piu | ‖u‖2 ≤ 1}

where ai ∈ Rn and Pi ∈ Rn×n, then,

sup
‖u‖2≤1

(ai + Piu)Tx = aix+ ‖P T
i x‖2

thus the original problem is equivalent with:

minimize cTx+ d

subject to aix+ ‖P T
i x‖2 ≤ bi, i = 1, 2, . . . ,m

And, in this case, the term ‖P T
i x‖2 could be treated as the amount of margin

to leave (and we could get rid of it in some cases this way).

49

• stochastic model: for random variable ai, constraints hold with probability
η:

minimize cTx+ d

subject to prob(aix ≤ bi) ≥ η, i = 1, 2, . . . ,m

It is suitable if you are pretty sure about the distribution.

Could be solved via SOCP as well:

Assuming ai’s distribution be Gaussian random variable with mean ai and
covariance Σi:

ai ∼ N (ai,Σi)

hence,

prob(aTi x ≤ bi) = Φ
(bi − aTi x
‖Σ

1
2
i x‖2

)
where Φ(x), the CDF (Cumulative Distribution Function) of N (0, 1) is:

Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt

thus when η ≥ 1
2
:

minimize cTx+ d

subject to aTi + Φ−1(η)‖Σ
1
2
i x‖2 ≤ bi, i = 1, 2, . . . ,m

These models have meanings, they originally came from some practical problems in
real life.

3.4.6 Geometric Programming (GP)

Generally speaking, it is not convex problem, but you may change the variables and
make it convex.

Geometric Program (GP)

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, 2, . . . ,m

hi(x) = 1, i = 1, 2, . . . , p

where:

• fi is posynomial:

A posynomial function f(x) is:

f(x) =
K∑
k=1

ckx
a1k
1 xa2k2 . . . xank

n

50

• hi is monomial:

A monomial function f(x) is:

f(x) = cxa11 x
a2
2 . . . xann , dom f = Rn++, c > 0, ai ∈ R

Sometimes also called a “scaling law”.

It is obviously not convex.

The product, ratio, square root, etc. of monomial functions
is monomial; the sum or square of posynomial functions is
posynomial.

But we could change it into convex form by defining:

• yi = log xi

• take logarithm of cost and constraints

such that:

• monomial functions:

f(x) = cxa11 x
a2
2 . . . xann

⇐⇒ log f(x) =
n∑
i=1

ai log xi

= aTy + b, (xi = eyi , b = log c)

• posynomial functions:

f(x) =
K∑
k=1

ckx
a1k
1 xa2k2 . . . xank

n

⇐⇒ log f(x) = log
(K∑
k=1

ea
T
k y+bk

)
, (xi = eyi , bi = log ci)

and thus the equivalent convex form of GP:

minimize log
(K∑
k=1

ea
T
0ky+b0k

)
subject to log

(K∑
k=1

ea
T
iky+bik

)
≤ 0, i = 1, 2, . . . ,m

Gy + d = 0

An GP example: the design of the cantilever beam. (Multiple segments, from the
wall to the end, becoming smaller.) See slides or textbook for details.

51

Forming a problem as a standard GP will already enable libraries such as the cvx (or
cvxpy) automatically handle the rest for you.

Note that two posynomial functions: f, g, for positive variable z, that f(z) ≤ g(z)
doesn’t make a posynomial constraint, and couldn’t be automatically handled by
library.

An arithmetic mean of the entries of a variable divided by the geometric mean,
is posynomial.

3.4.7 Generalized Inequality Constraints

Convex Problems with Generalized Inequality Constraints:

minimize f0(x)

subject to fi(x) �Ki
0, i = 1, 2, . . . ,m

Ax = b

where:

• f0 : Rn → R is convex;

• fi : Rn → Rki is Ki convex, with respect to proper cone Ki.

It has the same properties as standard convex problems. For example, convex
feasible set, and the local optimum is global optimum.

Examples:

• conic form problem: a special case with affine cost and affine constraints,

minimize cTx

subject to Fx+ g �K 0

Ax = b

Conic form problems are generalizations of linear programs (LP).

3.4.8 Semidefinite Program (SDP)

minimize cTx

subject to x1F1 + x2F2 + · · ·+ xnFn +G � 0

Ax = b

where:

• Fi, G ∈ Sk

52

• the inequality constraint is called linear matrix inequality (LMI)

• it includes problems with multiple LMI constraints, since the sum of two LMI
is also LMI:

∵ x1F11 + x2F12 + · · ·+ xnF1n +G1 � 0

x1F21 + x2F22 + · · ·+ xnF2n +G2 � 0

∴ x1

[
F11 0
0 F21

]
+ x2

[
F12 0
0 F22

]
+ · · ·+ xn

[
F1n 0
0 F2n

]
+

[
G1 0
0 G2

]
� 0

It generalizes most problems so far (except GP).

From LP to SDP:

LP:
minimize cTx

subject to Ax � b

is equivalent with SDP:

minimize cTx

subject to diag(Ax− b) � 0

From SOCP to SDP:

SOCP:
minimize fTx

subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, 2, . . . ,m

is equivalent with SDP:

minimize fTx

subject to

[
(cTi x+ di)I Aix+ bi
(Aix+ bi)

T cTi x+ di

]
� 0, i = 1, 2, . . . ,m

From Eigenvalue Minimization to SDP:

minimize λmax(A(x))

where A(x) = A0 + x1A1 + · · ·+ xnAn, with given Ai ∈ Sk.
Since:

λmax(A) ≤ t ⇐⇒ A � tI

we have that, it is equivalent with the SDP:

minimize t

subject to A(x) � tI

Matrix Norm Minimization to SDP:

minimize ‖A(x)‖2 = (λmax(A(x)TA(x)))
1
2

53

where A(x) = A0 + x1A1 + · · ·+ xnAn, with given Ai ∈ Rp×q, and t ∈ R, x ∈ Rn.

Since:
‖A‖2 ≤ t ⇐⇒ ATA � t2I (t ≥ 0)

⇐⇒
[
tI A
AT tI

] � 0

we have that, it is equivalent with the SDP:

minimize t

subject to

[
tI A(x)

A(x)T tI

]
� 0

3.4.9 Vector Optimization

The final generalization of optimization problem. A bit complicated.

General Vector Optimization Problem:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, 2, . . . ,m

hi(x) = 0, i = 1, 2, . . . , p

where f0(x) : Rn → Rq is minimized with respect to proper cone K ∈ Rq.
Convex Vector Optimization Problem:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, 2, . . . ,m

Ax = b

where f0(x) : Rn → Rq is minimized with respect to proper cone K ∈ Rq; f0 is
K-convex, and f1, . . . fm are convex.

Optimal and Pareto Optimal Points:

Define the set of achievable objective values:

O = {f0(x)|x is feasible}

then a feasible x is:

• optimal, if f0(x) is the minimum value (x∗) of O, where minimum means that:

y is feasible =⇒ f0(x∗) � f0(y)

• Pareto optimal, if f0(x) is a minimal value (xpo) of O, where minimal means
that:

y is feasible, f0(y) � f0(xpo) =⇒ f0(xpo) = f0(y)

54

An example of the optimal and Pareto optimal points:

Multicriterion Optimization:

f0(x) = (F1(x), F2(x), . . . , Fq(x))

with q different objectives, F1, . . . Fq, and K = Rq+.

Examples of the multicriterion optimization:

• Regularized Least-Squares:

minimize (w.r.t. R2
+) (‖Ax− b‖2

2, ‖x‖2
2)

we could draw a curve of F2 ∼ F1, and find the Pareto optimal points to solve
it.

• Risk Return Trade-Off in Portfolio Optimization:

minimize (w.r.t. R2
+) (−pTx, xTΣx)

subject to 1
Tx = 1,

x � 0

it is, minimizing the vector of risk of return and return variance. x, p ∈ Rn, x
is the investment portfolio, p is the asset price changes.

How to find Pareto optimal points? By scalarization.

Scalarization:

1. Choose λ �K∗ 0, where K∗ is the dual cone;

2. Solve the optimization problem, called scalar problem:

minimize (w.r.t. K) λTf0(x)

subject to fi(x) ≤ 0, i = 1, 2, . . .m

hi(x) = 0, i = 1, 2, . . . p

3. By varying λ, we could find almost all Pareto optimal points in the original
problem. They are optimal points in the scalar problem.

4. If xi is Pareto optimal, then the corresponding λi should be the inward norm
of the tangent line at point f0(xi).

5. For multicriterion problems:

λTf0(x) = λ1F1(x) + · · ·+ λqFq(x)

for the case where f0(x) = (‖Ax−b‖2
2, ‖x‖2

2), or the risk return trade-off case, we
could have λ = (1, γ) and thus we have a form similar with what we frequently
observe in ML, lost with regularization.

55

Suppose x minimizes f(x) + g(x). Then x is Pareto optimal for the bi-criterion
optimization problem minimize (f(x), g(x)).

• f0(x1, x2) = x1 + x2 solution is the minimal point of the intersection of the
feasible set and x1 + x2 = b;

• f0(x1, x2) = max{x1, x2} solution is the minimal point of the intersection of the
feasible set and x1 = x2 (consider the 3D shape of f0(x1, x2) ∼ x1 × x2);

• f0(x1, x2) = −x1 − x2 solution is the minimal point of the intersection of the
feasible set and −x1 − x2 = b;

• f0(x1, x2) = x2
1+9x2

2 solution is equivalent with considering minimizing (x2
1, 9x

2
2)

and find the optimal point, that is equivalent with finding the optimal point for
minimizing (x1, 3x2);

3.5 Duality

It is an organized way of forming highly nontrivial bounds on convex optimization
problems. It works even for hard problems that are not necessarily convex (but the
functions, the problems involved must be convex to make it work).

3.5.1 Lagrangian

Standard form problem that is not necessarily convex:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, 2, . . . ,m

hi(x) = 0, i = 1, 2, . . . , p

with dom f = D, x ∈ Rn, optimal value denoted as p∗.

Its Lagrangian, denoted as L : Rn × Rm × Rp → R, with domL = D × Rm × Rp:

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

it is basically a weighted sum, with λ and ν being the Lagrange multiplier associated
with the constraints.

3.5.2 Lagrange dual function

Lagrange dual function is denoted as g : Rm × Rp → R,

g(λ, ν) = inf
x∈D

L(x, λ, ν)

= inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)
)

56

g is always concave, and could be −∞ for some λ, ν.

There’s an important property, called the lower-bound property:

If λ � 0, then g(λ, ν) ≤ p∗.

its proof goes: since x is feasible and λ � 0:

f0(x̃) ≥ L(x̃, λ, ν) ≥ inf
x∈D

L(x, λ, ν) = g(λ, ν)

minimizing all feasible x̃ gives p∗ ≥ g(λ, ν). It holds for all λ and all ν.

For differentiable L, how we naturally calculate g is to calculate x that makes
∇xL(x, λ, ν) = 0, and plug it in L to obtain g.

However, if L is unbounded in x (e.g. affine), in the form of:

L(x, λ, ν) = L1(λ, ν) + L2(λ, ν)L3(x)

where L3 entirely relies on x, it is like x or x2, an informal expression here, then we
have:

g(λ, ν) =

{
L1(λ, ν) L2(λ, ν) = 0

−∞ otherwise

then we have g concave on domain {(λ, ν)|L2(λ, ν) = 0}, and that p∗ ≥ L1(λ, ν) if
L2(λ, ν) = 0.

Or sometimes the condition is different, e.g. L2 ≥ 0, when L3 = x3.

3.5.3 Lagrange dual and Conjugate Function

Original problem:
minimize f0(x)

subject to Ax � b

Cx = d

Then the dual function is:

g(λ, ν) = inf
x∈dom f0

(
f0(x) + (ATλ+ CTν)Tx− (bTλ+ dTν)

)
= −f ∗0 (−ATλ− CTν)− (bTλ+ dTν)

where, as defined before, the conjugate function,

f ∗(y) = sup
x∈dom f

(yTx− f(x))

It simplifies the derivation of dual if f0 is known.

57

3.5.4 (Lagrange) dual problem

It is finding the best (tight) lower bound.

maximize g(λ, ν)

subject to λ � 0

this is obviously a convex optimization problem, where the optimal value is d∗.

(λ, ν) is feasible if: (1) λ � 0, and (2) (λ, ν) ∈ dom g. The dual problem is often
simplified by making the implicit constraint of (λ, ν) ∈ dom g explicit.

The dual function provides a lower bound on the optimal value for both convex
optimization problems and non-convex problems.

3.5.5 Weak and strong duality

That is to say, if the primal (original) and the dual problem have the same optimal
values.

Weak Duality: d∗ ≤ p∗

• Always holds, for both convex and nonconvex problems;

• d∗ is not always computable, although in most cases it is);

Strong Duality: d∗ = p∗

• Does not hold in general;

• Usually holds for convex problems;

• How to decide if the strong duality holds? By using conditions that are called
constraint qualifications.

3.5.6 Slater’s Constraint Qualifications

It is just one type of constraint qualifications. Other types exist as well.

Satisfying the constraint qualifications doesn’t necessarily means
that the dual problem is not unbounded.
Slater’s Constraint Qualifications:

Strong duality will hold for a convex problem:

maximize f0(x)

subject to fi(x) ≤ 0 i = 1, 2, . . . ,m

Ax = b

if it is strictly feasible, in other words,

∃x ∈ intD : fi(x) < 0 i = 1, 2, . . .m, Ax = b

58

• The conditions also guarantee the dual optimum is attained if p∗ > −∞;

• Can be sharpened (strengthened):

– intD =⇒ relintD (interior relative to affine hull);

– linear inequalities do not need to hold with strict inequality.

It always apply to LP, QP 11

Strong duality may occur in cases where convexity isn’t
satisfied.

When this occurs, it means that the original problem could be solved
by convex optimization.

Every problem involving two quadratic functions (e.g. f0 being quadratic, and
subject to a quadratic function) can be solved exactly, convex or not. Because,
for all those problems, the dual is an SDP. This guarantees the zero duality gap
(strong duality).

For example,
minimizing xTPx

subject to ‖x‖2 = 1

It is not convex but it is solvable by convex optimization. So as:

minimizing xTPx+ 2bTx

subject to xTx ≤ 1

etc. We say they are not convex problem because, note that P can be anything, not
guaranteed symmetric.

In details,
minimizing xTPx+ 2bTx

subject to xTx ≤ 1

has dual function:
maximize − bT (A+ λI)†b− λ
subject to A+ λI � 0

b ∈ R(A+ λI)

and this dual function has an equivalent SDP:

maximize − t− λ

subject to

[
A+ λI b
bT t

]
� 0

Applicational examples include PCA and SVD.

11For proof see the textbook. Or we can walk through the process of writing down their dual
problem from raw.

59

3.5.7 Geometric interpretation

The duality gap somehow represents the “best line” that is tangent to the set G =
{(f1(x), f0(x))|x ∈ D}. An illustration is in the lecture note.

It is equivalent with understanding it with epigraph:

A = {(u, t)|f1(x) ≤ u, f0(x) ≤ t for some x ∈ D}

Remember that, when the feasible set of an optimization problem is not
convex, then the duality gap could be nonzero or zero.

3.5.8 Optimality Conditions: Complementary Slackness

Assume:


strong duality holds

x∗ is primal optimal

(λ∗, ν∗) is dual optimal

=⇒ g(λ∗, ν∗) = inf
x
L(x, λ∗, ν∗)

= inf
x

(
f0(x) +

m∑
i=1

λ∗i fi(x) +

p∑
i=1

ν∗i hi(x)
)

≤ f0(x∗) +
m∑
i=1

λifi(x
∗) +

p∑
i=1

νihi(x
∗)

≤ f0(x∗)

When f0(x∗) = g(λ∗, ν∗), the two inequalities hold with equality, and thus:

• x∗ minimizes L(x, λ∗, ν∗)

• Complementary slackness: λ∗i fi(x
∗) = 0 for ∀i ∈ {1, 2, . . . ,m}, therefore,{

λ∗i > 0 =⇒ fi(x
∗) = 0

fi(x
∗) < 0 =⇒ λ∗i = 0

“if one of them holds with some slack, the other must hold without
slack; you can’t have slack on both.”

3.5.9 Optimality Conditions: Karush-Kuhn-Tucker (KKT) Conditions

For a problem with differentiable fi and hi, we have four conditions that togetherly
named KKT conditions:

• Primal Constraints: {
fi(x) ≤ 0 i = 1, 2, . . . ,m

hi(x) = 0 i = 1, 2, . . . , p

60

• Dual Constraints: λ � 0

• Complementary Slackness: λifi(x) = 0 (i = 1, 2, . . . ,m)

• gradient of Lagrangian vanishes (with respect to x):

∇f0(x) +
m∑
i=1

λi∇fi(x) +

p∑
i=1

νi∇hi(x) = 0

If strong duality holds and x, λ, ν are optimal, then
KKT condition must be satisfied.
More details:

• If strong duality holds and x, λ, ν are optimal, then KKT condition must be
satisfied.

• If the KKT condition is satisfied by x, λ, ν, strong duality must hold and the
variables are optimal.

• If Slater’s Conditions (see section 3.5.6, implies strong duality) is satisfied,
x is optimal ⇐⇒ ∃λ, ν that satisfy KKT conditions.

3.5.10 Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual:

minimize f0(x) maximize g(λ, ν)
subject to fi(x) ≤ 0 (i = 1, 2, . . . ,m) subject to λ � 0

hi(x) = 0 (i = 1, 2, . . . , p)

perturbed problem and its dual:

minimize f0(x) maximize g(λ, ν)− uTλ− vTν
subject to fi(x) ≤ ui (i = 1, 2, . . . ,m) subject to λ � 0

hi(x) = vi (i = 1, 2, . . . , p)

We name the new optimal value p∗(u, v), as a function of parameters u, v. And we
can get some information from the unperturbed version that is helpful on it.

global sensitivity result:

Assume for the unperturbed problem,

{
Strong duality holds

λ∗, ν∗ are dual optimal

then p∗(u, v) ≥ g(λ∗, ν∗)− uTλ∗ − vTν∗

= p∗(0, 0)− uTλ∗ − vTν∗

61

where ui > 0 means loosen constraint, ui < 0 means tighten constraint.

We could gain some interpretations in respect with λ∗, ν∗ influence on p∗(u, v), under
certain conditions of u, v (> 0 or < 0 in specific).

local sensitivity:

If, in addition, p∗(u, v) is differentiable on u and on v, then we have:

λ∗i = −∂p
∗(0, 0)

∂ui
ν∗i = −∂p

∗(0, 0)

∂vi

there’s proof in lecture note and in textbook.

These sensitivity provides us theory bases if we want to tighten or loosen some
constraints.

3.5.11 Generalized inequalities

Problems with generalized inequalities:

minimizing f0(x)

subject to fi(x) �Ki
0 i = 1, 2, . . . ,m

hi(x) = 0 i = 1, 2, . . . , p

Changes:

• Lagrange multiplier λi is no longer R, it becomes Rki ;

• Lagrangian L : Rn × Rk1 × Rk2 × · · · × Rkm × Rp → R is defined as:

L(x, λ1, λ2, . . . , λm, ν) = f0(x) +
m∑
i=1

λTi fi(x) +

p∑
i=1

νihi(x)

it’ll be exactly the same if we replace νi with νTi , since hi(x) suppose to be zero.

• Dual function is defined as:

g(λ1, λ2, . . . , λm, ν) = inf
x∈D

L(x, λ1, λ2, . . . , λm, ν)

• Lower-bound property: If λi �K∗
i

0, then g(λ1, λ2, . . . , λm, ν) ≤ p∗;

•

An example: SDP (3.4.8):

minimize cTx

subject to x1F1 + x2F2 + · · ·+ xnFn +G � 0

Ax = b

in this illustration simplified as

minimize cTx

subject to x1F1 + x2F2 + · · ·+ xnFn � G

62

• Lagrange multiplier: Z ∈ Sk

• Lagrangian:

L(x, Z) = cTx+ tr
(
Z(x1F1 + x2F2 + · · ·+ xnFn −G)

)
• dual function:

g(Z) = inf
x
L(x, Z) =

{
− tr(GZ) tr(FiZ) + ci = 0, i = 1, . . . , n

−∞ otherwise

• the dual SDP:
minimize − tr(GZ)

subject to tr(FiZ) + ci = 0, i = 1, . . . , n

Z � 0

• p∗ = d∗ if primal SDP strictly feasible (exists “inside” feasible x)

3.6 Approximation and fitting

3.6.1 Norm approximation

minimize ‖Ax− b‖

where A ∈ Rm×n, m ≥ n. This is a norm on Rm.

There are multiple ways of interpreting the solution of this problem. See lecture
notes. (e.g. geometric, estimation, optimization problem.)

• least-square approximation:

minimize ‖Ax− b‖2

the approximate solution must satisfies:

ATAx = AT b

The following conditions are equivalent:

1. Ax = b has a unique least-square solution

2. The columns of A are linearly independent

3. ATA is invertible

4. rankA = n

and this condition leads to x∗ = (ATA)−1AT b.

63

• Chebyshev approximation:

minimize ‖Ax− b‖∞

can be solved as an LP:

minimize t

subject to − t1 � Ax− b � t1

• sum of absolute residuals approximation:

minimize ‖Ax− b‖1

can be solved as an LP:

minimize 1Ty

subject to − y � Ax− b � y1

Could refer to https://textbooks.math.gatech.edu/ila/least-squares.html.

Penalty function approximation

minimize φ(r1) + · · ·+ φ(rm)

subject to r = Ax− b

where A ∈ Rm×n and φ : R→ R is a convex penalty function.

Valid examples of φ:

• quadratic: φ(u) = u2

• deadzone-linear with width width a: φ(u) = max{0, |u| − a}

• log-barrier with limit a:

φ(u) =

{
−a2 log(1− (u/a)2) |u| < a

∞ otherwise

This kind of extended functions are also (strictly) convex.

• Huber penalty function with parameter M :

φ(u) =

{
u2 |u| ≤M

M(2|u| −M) |u| > M

it is a robust estimator that works unbelievably well, it allows a few outliers.

64

https://textbooks.math.gatech.edu/ila/least-squares.html

3.6.2 Least-norm problems

minimize ‖x‖
subject to Ax = b

Interpretations of the solutions could be geometric, estimation (x is the smallest
variable satisfies Ax = b), design (x are design variables).

Examples:

• least-square approximation:

minimize ‖x‖2

subject to Ax = b

the approximate solution must satisfies:

2x+ ATν = 0, Ax = b

• minimum sum of absolute values:

minimize ‖x‖1

subject to Ax = b

can be solved as an LP:

minimize 1Ty

subject to − y � x � y,

Ax = b

It is expected that most components of the x∗ will turn out to be zero.

By the way, if we have ‖·‖∞:

minimize ‖x‖∞
subject to Ax = b

then we could expect x∗ having most components being ±‖x‖∞.

• extension: least-penalty problem

minimize φ(x1) + · · ·+ φ(xn)

subject to Ax = b

where φ : R→ R is a convex penalty function.

65

3.6.3 Regularized approximation

The parent of the previous two approximations. More general.

minimize (w.r.t. R2
+) (‖Ax− b‖, ‖x‖)

A ∈ Rm×n, the norms on Rm and that on Rn could be different.

Interpretations could also vary from estimation, optimal design, to robust estimation.
Generally, the idea is: find a good estimation of Ax ≈ b with small x.

Generally, a smaller x is less sensitive for errors in A.

Besides, small x can represent physical quantities that are easier to realize in real
systems.

Examples:

• extension: least-penalty problem

minimize ‖Ax− b‖+ γ‖x‖

solution for γ > 0 traces out the optimal trade-off curve.

• Other common methods such as minimize ‖Ax− b‖2 + δ‖x‖2 with δ > 0. e.g.
Tikhonov regularization (ridge regression):

minimize ‖Ax− b‖2
2 + δ‖x‖2

2 (δ > 0)

=⇒ minimize
∥∥∥ [A√

σI

]
x−

[
b
0

] ∥∥∥2

2

=⇒ x∗ = (ATA+ δI)−1AT b

• Optimal input design (see lecture notes, it is basically a convolutional kernel),
signal reconstruction (see lecture notes, instead of having two norms, its ‖x‖ is
replaced by φ(x), a regularization function / smoothing signal).

3.6.4 Robust approximation

minimize ‖Ax− b‖

with uncertain A.

General idea of two ways of solving it:

• stochastic: assume A is random, minimize E(‖Ax− b‖);
An example:

A = A+ U, U random, EU = 0, EUTU = P

66

E(‖Ax− b‖2
2) = E(‖Ax− b+ Ux‖2

2)

= ‖Ax− b‖2
2 + E(xTUTUx)

= ‖Ax− b‖2
2 + xTPx

= ‖Ax− b‖2
2 + ‖P 1/2x‖2

2

and the robust LS problem is transformed into an LS problem this way.

It is equivalent to a Tikhonov regularized nominal problem if the entries of A
are i.i.d.

• worst case: minimize supA‖Ax−b‖; refer to the lecture notes for some special-
cases.

tractable only in some cases (certain distribution, certain norm, etc.).

The safe way of checking if the robust model works in practical, is to try some valid
A and see if the result is approximately stable.

3.7 Statistical estimation

3.7.1 Maximum likelihood estimation (MLE)

It is under the category of parametric distribution estimation. basically, just maximize
(over x) log px(y).

`(x) = log px(y)

is called the log-likelihood function. x ∈ C can be added easily by defining log px(y) =
0 when x /∈ C.

It is convex optimization problem if log px(y) is concave in x for fixed y.

Examples include, linear measurement with IID noise, with different distributions of
noise (see lecture note); logistic regression.

3.7.2 Optimal detector design

Binary hypothesis testing: knowing that x ∈ X is generated from one of two
distributions, figure out which.

See lecture notes.

3.7.3 Experiment design

General, standard, ML routine.

See lecture notes.

67

3.8 Geometric problems

3.8.1 Extremal volume ellipsoids

Minimum volume ellipsoid around a set (C), also known as Löwner− John
Ellipsoid, denoted as E :

E = {v | ‖Ax+ b‖2 ≤ 1}, A ∈ Sn++

volume of E is proportion to detA−1, the question of finding E is equivalent with:

minimize (over A, b) log detA−1

subject to sup
v∈C
‖Ax+ b‖2 ≤ 1

it is convex, but for general C it is hard to solve, because evaluating the constraints
is hard. Solvable for finite set:

minimize (over A, b) log detA−1

subject to ‖Axi + b‖2 ≤ 1, i = 1, 2, . . . ,m

it gives a Löwner − John Ellipsoid for a polyhedron, the convex hull formed by all
possible x points. (This is not obvious but it’s true.)

Maximum volume inscribed (inside) ellipsoid of (C), denoted as E :

E = {v | ‖Bu+ d‖2 ≤ 1}, B ∈ Sn++

volume of E is proportion to detB, the question of finding E is equivalent with:

maximize log detB

subject to sup
‖u‖2≤1

IC(Bu+ d) ≤ 0

(
IC(x) =

{
0 x ∈ C
∞ x /∈ C

)
it is convex, but for general C it is hard to solve, because evaluating the constraints
is hard.

Solvable for polyhedron {x|aTi x ≤ bi, i = 1, 2, . . . ,m}

maximize log detB

subject to ‖Bai‖2 + aTi d ≤ bi, i = 1, . . . ,m

since we have sup‖u‖2≤1 a
T
i (Bu+ d) = ‖Bai‖2 + aTi d.

Efficiency, with C ⊆ Rn convex and bounded with nonempty interior:

68

Ellipsoid Type Löwner − John Ellipsoid Maximum volume inscribed Ellipsoid
Original Covers C Lies inside C
Behavior Shrunk by a factor n Expanded by a factor n
Result Lies inside C Covers C

If C is symmetric, then n could be reduced to
√
n.

Any norm on set of Rn could be projected into the quadratic
norm within the factor of 1

4.

The smallest norm from infinite set P to a point a is always easy, while for the largest
norm, Euclidean is not easy but `∞ is.

3.8.2 Centering

Definitions of center of C: Center of the Maximum volume inscribed Ellipsoid
(MVE): called Chebyshev center when it is ball instead of ellipsoid. Chebyshev
center could be found using LP.

MVE center is invariant under affine coordinate transforms.

The analytic center of convex inequalities and linear equations:

fi(x) ≤ 0, i = 1, 2, . . . ,m

Fx = g

is defined as the optimal point of:

minimize −
m∑
i=1

log(−fi(x))

subject to Fx = g

is easier to compute than ellipsoid centers, and two convex optimization problems
could have the same feasible set but different centers.

It is a function of the description of the set; not the feasible set itself.

3.8.3 Classification

This part is basically the idea that give rise to algorithms such as SVM. Very standard
and nothing new.

Just why it works, how to estimate the values, soft margin (called slack in this case),
hinge loss, non-linear SVM, etc. Focusing on why they are solvable, they could be
transformed into convex optimization problems.

See the lecture note.

69

3.9 Unconstrained minimization

3.9.1 Terminology and assumptions

minimize f(x)

with no constraint, and f is convex, twice continuously differentiable (hence dom f
is open), assuming that p∗ = infx f(x) is attained and finite.

unconstrained minimization methods:

• produce sequence of points x(k) ∈ dom f , such that f(x(k))→ p∗;

• interpretation: this is to solve the optimality condition iteratively:

∇f(x∗) = 0

• requirement on x(0): x(0) ∈ dom f and the sublevel set S = {x|f(x) ≤
f(x(0))} is closed.

• it is hard to verify that a certain sublevel set is closed, but in certain conditions
all sublevel sets are closed:

1. equivalent to that epi f is closed

2. true if dom f = Rn

3. true if when x approaches the boundary, f(x)→∞

strong convexity and implications:

If ∃m > 0 such that, ∀x ∈ S:
∇2f(x) � mI

then f mush be strongly convex in S.

Implications:

• for x, y ∈ S:

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖x− y‖2

2

hence, S is bounded.

• p∗ > −∞ and ∀x ∈ S:

f(x)− p∗ ≤ 1

2m
‖∇f(x)‖2

2

if m is known then this is a useful stopping criterion.

70

3.9.2 Gradient descent method

Descent Methods:

x(k+1) = x(k) + t∆x(k) f(x(k+1)) < f(x(k))

where ∆x(k) is called step, and t the step size (learning rate).

From convexity, it implies that:

∇f(x)T∆x < 0

Line Search Types:

1. Exact Line Search:
t = argmint>0 f(x+ t∆x)

2. Backtracking Line Search (with parameters α ∈ (0, 1
2
), β ∈ (0, 1)):

Staring with t = 1, repeatedly having t = βt at each iteration, until

f(x+ t∆x) < f(x) + αt∇f(x)T∆x

In descent methods, the particular choice of line search does
not matter so much, but the particular choice of search
direction matters a lot.

Gradient Descent Method:

General descent method with ∆x = −∇f(x)

• Usually stopping criteria ‖∇f(x)‖2 ≤ ε

• Very simple but slow, thus not frequently used in practice.

Starting at a point near the optimal point doesn’t necessarily means it’ll converge
fast in gradient descent.

3.9.3 Steepest descent method

normalized steepest descent direction (at x, for norm ‖·‖):

∆xnsd = argmin{∇f(x)Tv | ‖v‖ = 1}

interpretation: for small v,

f(x+ v) ≈ f(x) +∇f(x)Tv

∆xnsd is the unit-norm step with the most (/ the most significant) negative-direction
derivative.

71

unnormalized steepest descent direction

∆xsd = ‖∇f(x)‖∗∆xusd

where ‖·‖∗ simply means the (whatever it is) norm.

And it satisfies:
∇f(x)T∆xsd = −‖∇f(x)‖2

∗

steepest descent method

General descent method with ∆x = ∆xsd.

Examples:

f(x) name ∆xsd
‖x‖2 Euclidean Norm −∇f(x)

‖x‖P = (xTPx)1/2 Quadratic Norm −P−1∇f(x)

‖x‖1 `1-Norm −(∂f(x)
∂xi

)ei

by the way in the `1-norm,

|∂f(x)

∂xi
| = ‖∇f(x)‖∞

it basically means updating one entity at a time.

Choice of the matrix P (for norm ‖·‖P) has strong effect on the speed of converge.

3.9.4 Newton’s method gradient

The Newton’s method comes from the idea of “doing steepest descent method, but
let’s change the P each iteration to the temporary best guess”.

∆xnt = − ∇f(x)

∇2f(x)

Interpretations includes:

• x+ ∆xnt minimized second-order approximation

f̂(x+ v) = f(x) +∇f(x)Tv +
1

2
vT∇2f(x)

• x+ ∆xnt solves linearized optimality condition

∇f(x+ v) ≈ ∇f̂(x+ v) = ∇f(x) +∇2f(x)v = 0

• ∆xnt is steepest descent direction at x in local Hessian norm.

‖u‖∇2f(x) = (uT∇2f(x)u)1/2

72

3.9.5 Newton decrement

λ(x) = (∇f(x)T∇2f(x)−1∇f(x))1/2

which is a measurement of proximity of x to x∗.

properties:

• equal to the quadratic Hessian norm of ∆xnt:

λ(x) = (∆xTnt∇2f(x)∆xnt)
1/2

• directional derivative:

∇f(x)T∆xnt = −λ(x)2

• affine invariant (unlike ‖∇f(x)‖2)

f̃(y) = f(Tx), y(0) = T−1x(0) =⇒ y(k) = T−1x(k)

• it is an approximation of f(x) − p∗, with p∗ estimated by p∗ ≈ infy f̂(y) (the
quadratic estimation):

f(x)− inf
y
f̂(y) =

1

2
λ(x)2

3.9.6 Newton’s method

1. given starting point x ∈ dom f , tolerance ε > 0

2. repeat the following steps:

(a) Compute the Newton step and decrement:

∆xnt = − ∇f(x)

∇2f(x)

λ2 = (∇f(x)T∇2f(x)−1∇f(x))

(b) (stopping criterion) quit if λ2

2
≤ ε

(c) Line search: choose t by backtracking line search

(d) Update x = x+ t∆xnt

73

3.9.7 Classical Convergence Analysis for Newton method

Assume:

• f strongly convex on S with constant m

• ∇2f is Lipschitz continuous on S, with constant L > 0

‖∇2f(x)−∇2f(y)‖2 ≤ L‖x− y‖2

(L measures how well f could be approximated by a quadratic function; in other
words, the third derivation is small)

Outline: there exist constants η ∈ (0, m
2

L
), γ > 0, such that{

f(x(k+1))− f(x(k)) ≤ −γ ‖∇f(x)‖2 ≥ η
L

2m2‖∇f(x(k+1))‖2 ≤
(

L
2m2‖∇f(x(k))‖2

)2 ‖∇f(x)‖2 < η

1. damped Newton phase (‖∇f(x)‖2 ≥ η):

• most iterations require backtracking steps

• function value decreases by at least γ

• if p∗ > −∞, this phase costs iterations no more than:

f(x(0))− p∗

γ

2. quadratically convergent phase (‖∇f(x)‖2 < η):

• all iterations use step size t = 1

• ‖∇f(x)‖2 converges to zero quadratically

L

2m2
‖∇f(x(k+1))‖2 ≤

(L

2m2
‖∇f(x(k))‖2

)2 ≤ 1

2

Therefore, the number of iterations in total is bounded by

f(x(0))− p∗

γ
+ log2 log2(

ε0
ε

)

where γ, ε0 are constants depending on m, L, x(0), but all of them are usually
unknown. The second term is small (in terms of 6) and almost constant in practice.

It provides insights and explanations into the two phases, and why Newton method
converges super fast.

When Newton’s method is started from a point near the
solution, it will converge very quickly. It is fast even if it’s not close to
the optimal at the beginning.

74

3.9.8 Newton Method and Cholesky factorization

Evaluate derivatives and solve Newton system (the main task each step):

H∆x = g

where g = −∇f(x), the Hessian H = ∇2f(x).

could be implemented via Cholesky factorization:

H = LLT ∆xnt = L−TL−1g λ(x) = ‖L−1g‖2

and it costs n3

3
flops for unstructured problem; much less if H is sparse, banded.

Newton’s method is seldom used in machine learning practice, even though Newton’s
method does work well on noisy data, and common loss functions are self-
concordant, is because:

• Hessian inversion may be a numerically expensive operation;

• it is generally not practical to form or store the Hessian in such problems, due
to large problem size.

However, under proper factorization, it might be much less costly.

3.10 Equality constrained minimization

Stepping towards solving the generalized convex optimization problem, by adding
constraints. Equality constraints are the easiest.

minimize f0(x)

subject to Ax = b

where we assume that: f is a twice continuously differentiable convex function; A ∈
Rp×n with rankA = p; p∗ is finite and attained.

The optimality conditions (for x∗ being optimal, iff), according to KKT (see section
3.5), is that: there exists ν∗:

∇f(x∗) + ATν = 0 Ax∗ = b

they come from the dual residual and the primal residual.

The equality-constrained quadratic minimization with P ∈ Sn+:

minimize
1

2
xTPx+ qTx+ r

subject to Ax = b

75

optimality conditions are: [
P AT

A 0

] [
x∗

v∗

]
=

[
−q
b

]
the coefficient matrix is also called the KKT matrix; this matrix is nonsingular
iff:

Ax = 0, x 6= 0 =⇒ xTPx > 0

this nonsingular-condition is equivalent with

P + ATA � 0

3.10.1 Eliminating equality constraints

{x|Ax = b} = {Fz + x̂|z ∈ Rn−p}
x̂ is any, particular solution; F ∈ Rn×(n−p); R(F) = N (A), thus rankF = n − p,
AF = 0.

Therefore, the eliminated problem:

minimize f(Fz + x̂)

becomes an unconstrained problem of z. And once we have z∗:

x∗ = fz∗ + x̂

ν∗ = −(AAT)−1A∇f(x∗)

3.10.2 Newton’s method with equality constraints

Newton’s step ∆xnt of f at feasible x is given by solution v of:[
∇2f(x) AT

A 0

] [
v
w

]
=

[
−∇f(x)

0

]
Interpretations:

1. v solves second order approximation

minimize f̂(x+ v) = f(x) +∇f(x)Tv + (1/2)vT∇2f(x)v

subject to A(x+ v) = b

2. it follows from linearizing optimality conditions

∇f(x+ v) + ATw ≈ ∇f(x) +∇2f(x)w + ATw = 0 A(x+ v) = b

Newton’s decrement λ(x):

λ(x) = (∆xTnt∇2f(x)∆xnt)
1/2 = (−∇f(x)T∆xnt)

1/2

with properties:

76

• gives an estimation:

f(x)− p∗ ≈ f(x)− inf
Ay=b

f̂(y) =
λ(x)2

2

• directional derivative in Newton derivative:

d

dt
f(x+ t∆xnt)

∣∣
t=0

= −λ(x)2

• in general,
λ(x) 6= (∇f(x)T∇2f(x)−1∇f(x))1/2

it is not equivalent with the value without constraints.

The Newton’s method (the procedure) is the same with without constraints, and it
is also affine invariant.

A feasible descent method: x(k) feasible and f(x(k+1)) < f(x(k)).

minimize f̃(z) = f(Fz + x̂)

where:

• z ∈ Rn−p

• Ax̂ = b, rankF = n− p and AF = 0

• x(0) = Fz(0) + x̂ =⇒ x(k) = Fz(k) + x̂

Don’t need separate convergence analysis. It is about the same with the original one.

3.10.3 Infeasible start Newton method

With infeasible x:
x ∈ dom f, Ax 6= b

we have that [
∇2f(x) AT

A 0

] [
v
w

]
= −

[
∇f(x)
Ax− b

]
where still, v’s solution is ∆xnt.

There are similar interpretations, for details see the lecture notes.

The infeasible start Newton method has different process than that of the feasible
one, for details see the lecture notes. Not a descent method!

77

3.10.4 Implementation of the Newton Method[
H AT

A 0

] [
v
w

]
=

[
g
h

]
solution methods:

• LDLT factorization

• If H is nonsingular, we can do the elimination:

AH−1ATw = h− AH−1g Hv = −(g + ATw)

• If H is singular, we can do the elimination for:[
H + ATQA AT

A 0

] [
v
w

]
=

[
g + ATQh

h

]
with Q � 0 for which H + ATQA � 0.

Equality-constrained analytic centering:

• primal problem

minimize −
n∑
i=1

log xi

subject to Ax = b

• dual problem

maximize − bTν +
n∑
i=1

log(ATν)i + n

Complexity per iteration of three methods is identical, each case
end up solving:

ADATw = h

with D positive diagonal.

1. block elimination to solve the KKT system:[
diag(x)−2 AT

A 0

] [
∆x
w

]
=

[
diag(x)−1

1

0

]
reduces to solving

Adiag(x)2ATw = b

2. solving Newton system:

Adiag(ATν)−2AT∆ν = −b+ Adiag(ATν)−1
1

78

3. block elimination to solve the KKT system:[
diag(x)−2 AT

A 0

] [
∆x
∆ν

]
=

[
diag(x)−1

1

Ax− b

]
reduces to solving

Adiag(x)2ATw = 2Ax− b

Example: network flow optimization (see lecture notes).

3.11 Interior-point methods

Interior point methods does not work well if some of the constraints are not strictly
feasible.

3.11.1 Inequality constrained minimization

minimize f0(x)

subject to fi(x) ≤ 0 i = 1, 2, . . .m

Ax = b

assume that:

• fi is convex and twice continuously differentiable

• A ∈ Rp×n, rankA = p

• p∗ is finite and attained

• strictly feasible (exists interior point), hence, strong duality holds and dual
optimum is attained.

3.11.2 Logarithmic barrier function and central path

First, reformulate the original problem via indicator function of R− (outputs 0 if
input ≤ 0, otherwise ∞) as I−.

minimize f0(x) +
m∑
i=1

I−(fi(x))

subject to Ax = b

Then, approximate via logarithm barrier:

minimize f0(x)− 1

t

m∑
i=1

log(fi(x))

subject to Ax = b

79

for t > 0, −1
t

log(−u) is a smooth approximation of I−(u), and the approximation
improves as t→∞.

Logarithm barrier function:

φ(x) = −
m∑
i=1

log(−fi(x)), domφ = {x|fi(x) < 0, i = 1, 2, . . . ,m}

and we know that,

• it is convex

• it is twice continuously differentiable:

∇φ(x) =
m∑
i=1

1

−fi(x)
∇fi(x)

∇2φ(x) =
m∑
i=1

1

fi(x)2
∇fi(x)∇fi(x)T +

m∑
i=1

1

−fi(x)
∇2fi(x)

Central Path:

For t > 0, define x∗(t) as the solution of

minimize tf0(x) + φ(x)

subject to Ax = b

assuming that x∗(t) exists and is unique for each t > 0, then the central path is
defined as

{x∗(t)|t > 0}

Example: for a LP problem (f0(x) = cTx), hyperplane cTx = cTx∗(t) is
tangent to level curve of φ through x∗(t).

Dual points on central path

x = x∗(t) if there exists a w such that

t∇f0(x) +
m∑
i=1

1

−fi(x)
∇fi(x) + ATw = 0, Ax = b

therefore, x∗(t) minimizes the Lagrangian:

L(x, λ∗(t), ν∗(t)) = f0(x) +
m∑
i=1

λ∗i (t)fi(x) + ν∗(t)T (Ax− b)

where we have: {
λ∗i (t) = 1

−tfi(x∗(t))

ν∗(t) = w
t

80

this confirms the intuitive idea that

lim
t→∞

f0(x∗(t)) = p∗

proof :
p∗ ≥ g(λ∗(t), ν∗(t))

= L(x∗(t), λ∗(t), ν∗(t))

= f0(x∗(t))− m

t
m
t

is called a duality gap.

Interpretations via KKT conditions:

x = x∗(t), λ = λ∗(t), ν = ν∗(t) satisfy:

1. primal constraints: fi(x) ≤ 0, i = 1, 2, . . .m, Ax = b

2. dual constraints: λ � 0

3. approximate complementary slackness 12:

−λifi(x) =
1

t
, i = 1, 2, . . . ,m

4. gradient of Lagrangian with respect to x vanishes:

∇f0(x) +
m∑
i=1

λi∇fi(x) + ATν = 0

An example of central path is force field interpretation, it is an example from
control theory, see the lecture notes for details.

3.11.3 Barrier method

A.k.a. “path-following”, “SUMT (sequential unconstrained minimization tech-
nique)”, etc.

The process:

1. given strictly feasible x, t = t(0) > 0, µ > 1, tolerance ε > 0.

2. repeat:

(a) Centering step: Compute x∗(t) by minimizing tf0 + φ, subject to Ax = b;

(b) Update: x = x∗(t);

(c) Stopping criterion: quit if m
t
< ε

12Difference with KKT is that here it was λifi(x) = 0 in the KKT.

81

(d) Increase t: t = µt

where we have:

• terminate when f0(x)− p∗ ≤ ε, follows from f0(x∗(t))− p∗ ≤ m
t

• centering is usually done using Newton’s method; inner-outer iterations trade-
off at µ

For the convergence analysis, see lecture notes or the textbook.

What happens in general: as you approach the target, the problem gets harder.

3.11.4 Feasibility and phase I methods

Phase I is to compute the strictly feasible starting point for barrier method.

Basic phase I method:

minimize (over x, s) s

subject to fi(x) ≤ s, i = 1, 2, . . . ,m

Ax = b

For more details see lecture notes or textbook.

3.11.5 Complexity analysis via self-concordance

Analyzes the time complexity. e.g. Newton’s method iterations per centering step.

3.11.6 Generalized inequalities

minimize f0(x)

subject to fi(x) �Ki
0, i = 1, 2, . . . ,m

Ax = b

where

• f0 convex

• fi : Rn → Rki , i = 1, 2, . . . ,m convex with respect to proper cone Ki ∈ Rki

• fi twice continuously differentiable

• A ∈ Rp×n, rankA = p

• assume that p∗ is finite and attained

• assume strict feasibility =⇒ (1) strong duality; (2) dual optimum attained

82

Examples of greatest interest: SOCP, SDP.

Generalized logarithm for proper cone:

ψ : Rn → R is called the generalized logarithm for proper cone K ⊆ Rq if:

• domψ =
∫
K

• ∇2ψ(y) ≺ 0 for ∀y �K 0

• ψ(sy) = ψ(y) + θ log s, for ∀s > 0, y �K 0 (θ is the degree of ψ)

Examples:

cone name cone generalized logarithm degree
nonnegative orthant K = Rn+ ψ(y) =

∑n
i=1 log yi θ = n

positive semidefinite cone K = Sn+ ψ(Y) = log detY θ = n
second-order cone K = {y ∈ Rn+1|(y2

1 + y2
2 +

· · ·+ y2
n)1/2 ≤ yn+1}

ψ(y) = log(y2
n+1−y2

1−· · ·−
y2
n)

θ = 2

Properties: for y �K 0,

∇ψ(y) �K∗ 0, yT∇ψ(y) = θ

Examples:

• nonnegative orthant (K = Rn+, ψ(y) =
∑n

i=1 log yi, θ = n):

∇ψ(y) = (
1

y1

,
1

y2

, . . . ,
1

yn
) yT∇ψ(y) = n

• positive semidefinite cone (K = Sn+, ψ(Y) = log detY , θ = n):

∇ψ(Y) = Y −1 tr(Y∇ψ(Y)) = n

• second-order cone (K = {y ∈ Rn+1|(y2
1 + y2

2 + · · · + y2
n)1/2 ≤ yn+1}, ψ(y) =

log(y2
n+1 − y2

1 − · · · − y2
n), θ = 2):

∇ψ(y) =
2

y2
n+1 − y2

1 − y2
2 − · · · − y2

n


−y1

−y2
...
−yn
yn+1

 tr(yT∇ψ(y)) = 2

Logarithm barrier for fi(x) �Ki
0 (i = 1, 2, . . .m):

φ(x) = −
m∑
i=1

ψi(−fi(x))

with domφ = {x|fi(x) ≺Ki
0, i = 1, 2, . . . ,m}.

83

• ψi is the generalized logarithm for Ki, with degree θi;

• φ is convex and twice continuously differentiable

Central path: {x∗(t)|t > 0} where x∗(t) solves:

minimize tf0(x) + φ(x)

subject to Ax = b

Dual points on central path

x = x∗(t) if there exists a w ∈ Rp such that

t∇f0(x) +
m∑
i=1

Dfi(x)T∇fi(x) + ATw = 0, Ax = b

where Dfi(x)T ∈ Rki×n is derivative matrix of fi; therefore, x∗(t) minimizes the
Lagrangian:

L(x, λ∗(t), ν∗(t)) = f0(x) +
m∑
i=1

λ∗i (t)fi(x) + ν∗(t)T (Ax− b)

where we have: {
λ∗i (t) = 1

t
∇ψi(−fi(x∗(t)))

ν∗(t) = w
t

besides, the properties of ψi implies that

λ∗i (t) �K∗
i

0

with dual gap

f0(x∗(t))− g(λ∗(t), ν∗(t)) =
1

t

m∑
i=1

θi

Example: SDP, Fi ∈ Sp

minimize cTx

subject to F (x) =
n∑
i=1

xiFi +G � 0

• logarithm barrier:
φ(x) = log det(−F (x)−1)

• central path: x∗(t) minimizes

tcTx− log det(−F (x))

hence,
tci − tr(FiF (x∗(t))−1) = 0, i = 1, 2, . . . , n

84

• dual point on central path: Z∗(t) = −1
t
F (x∗(t))−1 is feasible for

maximize tr(GZ)

subject to tr(FiZ) + ci = 0, i = 1, 2, . . . , n

Z � 0

• duality gap on central path:

cTx∗(t)− tr(GZ∗(t)) =
p

t

• The barrier method’s only difference is that stopping condition m
t
< ε is replaced

by
∑m

i=1 θi
t

.

• number of outer iterations ⌈ log(
∑m

i=1 θi
εt(0)

)

log µ

⌉
3.11.7 Primal-dual interior-point methods

Generally speaking, the primal-dual interior-point methods are:

• more efficient when high accuracy is required

• can start from infeasible points

• cost each iteration same as barrier method

• update primal and dual variables at each iteration

• no distinct between inner and outer iterations

• often exhibits superlinear asymptotic convergence

• search direction can be interpreted as Newton directions for modified KKT
conditions

it is more commonly used in practice, than the barrier method.

4 Exercise and Examples Conclusions

4.1 Basic Settings

4.1.1 About Vectors

All vectors of form Rn in this course are, by default, vertical, instead of horizontal.

85

4.2 Math Tools

4.2.1 Cauchy-Schwarz Inequality

Abbreviated as “Cauchy Inequality” in most Chinese materials.

Generally, it means:
(uTv)2 ≤ (uTu)(vTv)

for ∀u,v ∈ RT .

4.2.2 Jensen’s Inequality

The basic inequality goes:

If

{
f is convex

θ ∈ [0, 1]
=⇒ f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

And its extension goes:

If

{
f is convex

z is any random variable
=⇒ f(Ez) ≤ Ef(z)

The basic inequality is simply a special case of the extension with discrete distribution
with:

prob(z = x) = θ, prob(z = y) = (1− θ)

4.3 Proof Routines

4.3.1 To prove convex set

Geometrically:

1. Any x1, x2 ∈ C

2. Is the line segment between (x1, x2) always in C? If yes then it is convex set.

Algebraically:

1. Assume x1, x2 ∈ C

2. If x = θx1 + (1− θ)x2 ∈ C then the set C is convex.

Technically: The operations that preserve convexity (see 3.2.10).

Some examples:

• The set of points closer to a given point than another given point is convex.
(ball or halfspace)

• The set of points closer to a given point than a given set is convex. (operation
preserve convexity)

• The set of points closer to one set than another is not convex, where distance
is defined by the closest point’s line segment in between.

86

4.3.2 To prove convex function

• Verify definition. If the function is complex, simplify it by restricting it to a
line.

• If the function f is twice-differentiable, examine ∇2f .

• Show that f is obtained from some known convex functions by certain operations
(the operations that preserve convexity). Refer to part 3.3.10 for more details.

• Prove that the epigraph of f is a convex set.

epi f = {(x, t)|f(x) ≤ t}
= {(x, t)|g(x, t) ≤ 0}

where in g(x, t), t is shown as ...
t
. Now proving that g(x, t) is convex is enough.

An example:
f(x) = e−a

√
x, dom f = R+

when will f be convex?

Solution: let f(x) = h(g(x)), then we have

g(x) = −a
√
x, h(x) = ex

h(x) is obviously convex and non-decreasing, thus to make f convex, g need to be
convex. Therefore, a ≥ 0.

4.3.3 To prove quasiconvex / quasiconcave / quasilinear

• quasiconvex:

– the sublevel sets (f(x) ≤ α) are convex

– −f is quasiconcave

• quasiconcave:

– the superlevel sets (f(x) ≥ α) are convex

– −f is quasiconvex

• quasilinear:

– both quasiconvex and quasiconcave

87

4.3.4 Relaxations on Constraints’ Expressions

Sometimes abbreviated. Such as, we have two lines of constraints:

Ax � b

x � 0

and indeed in standard form it means:

−Ax+ b � 0

−x � 0

and the formal standard form actually looks like:

−
[
A
I

]
x+

[
b
0

]
� 0

4.3.5 Lagrangian, Dual, KKT

All routine follows what is discussed in section 3.5, Duality part.

The key point in solving these problems, is to get the equivalent form of some
primal problems.

The equivalent primal problem could be obtained; but, there isn’t necessarily
linkage between the original problem’s dual and the equivalent problem’s dual. It
could lead to completely different duals. It means that, we could have an original
problem with an unsolvable dual, with equivalent questions with readily-solvable
duals.

Some common reformulations:

• (introducing) new variables / new constraints

• explicit constraints ←→ implicit constraints

e.g. The explicit constraint:

minimize f0(x)

subject to constraintpartA

constraintpartB

is equivalent with implicit constraint:

minimize f̃0(x) =

{
f0(x) constraintpartA

∞ otherwise

subject to constraintpartB

• transform the objective / constraints

e.g. f0(x)→ φ(f0(x)), φ is convex and increasing

Examples:

• minimize f0(φ(x))←→ minimize f0(y) & s.t. φ(x)− y = 0

88

4.4 Matrix Tricks

4.4.1 Dealing with Sn+ or Sn++

• Generally, if the conclusion is not obvious, try on fixed z:

zTMz ≤ zTNz =⇒M � N

4.4.2 A useful fact

inf
X�0

(
log detX−1 + tr(XY)

)
=

{
log detY + n Y � 0

−∞ otherwise

and the minimizer when Y � 0 is X = Y −1.

To prove it we could assume that Y � 0 and then there exists a 6= 0 s.t. aTY a � 0.
Choosing X = I + taaT , then detX = 1 + t‖a‖2

1 and:

log detX−1 + tr(XY) = − log(1 + taTa) + trY + taTY a

goes to −∞ as t→∞.

Appeared in:

• (A7.1 (b))

4.4.3 Some Useful Equations about Trace

With Q ∈ Sn++,
tr(Qaia

T
i) = aTi Qai

4.4.4 Eigenvalue Decomposition

For any symmetric matrix X ∈ Sn, we can do eigenvalue decomposition as:

X = QΛQ−1, Λ =

λ1 . . .
...

...
. . . λn


where Q’s columns are independent eigenvectors.

XQ = QΛ

89

And we also have:
X = QΛQ−1

X2 = (QΛQ−1)(QΛQ−1)

= QΛQ−1QΛQ−1

= QΛ2Q−1

Xn = QΛnQ−1

X−1 = QΛ−1Q−1

Λp =

λ
p
1 . . .
...

...
. . . λpn


For positive semidefinite matrix X, we have λi ≥ 0; for positive
definite matrix X, we have λi > 0.

Could refer to http://mathworld.wolfram.com/EigenDecomposition.html.

90

http://mathworld.wolfram.com/EigenDecomposition.html

	Introduction
	Mathematical Optimization
	Least Square and Linear Programming
	Examples
	Nonlinear Optimization (Non-Linear Programming)
	A Brief History

	Math Basis
	Numerical linear algebra background
	Introduction
	Matrix structure and algorithm complexity
	Solving linear equations with factored matrices
	LU factorization
	sparse LU factorization
	Cholesky factorization
	sparse Cholesky factorization
	LDLT factorization
	Equations with structured sub-blocks
	Structured matrix with low-rank term

	Linear Algebra
	Dimension & Rank and Determinants
	Norm
	Dual Norm
	Null Space (a.k.a. Kernel), Range (a.k.a. Image)
	Pseudo-Inverse
	Vectorization
	Singular Matrix
	More on Determinant
	Matrix Trace
	Eigen Decomposition
	Positive Semi-Definite Matrix
	Positive Definite Matrix
	Schur complement

	Calculus and Analysis
	Differentiate
	Conjugation
	Complex Conjugate

	Course Concepts
	Introduction
	Mathematical Optimization and Convex Optimization
	Least Square and Linear Programming

	Convex Set
	Empty Set
	Affine Sets and Convex Sets
	Convex Combination and Convex Hull
	Conic combination and Convex Cone
	Hyperplane and Halfspace (example 1 of convex set)
	Euclidean Balls and Ellipsoids (example 2 of convex set)
	Norm Balls and Norm Cones (example 3 of convex set)
	Polyhedra (a.k.a. Polytopes) (example 4 of convex set)
	Positive Semidefinite Cone (example 5 of convex set)
	Operations that Preserve Convexity
	Generalized Inequalities
	Minimum and Minimal elements of Generalized Inequality
	Separating Hyperplanes and Supporting Hyperplanes
	Dual Cones and Generalized Inequalities
	Minimum and Minimal Elements via Dual Inequalities

	Convex Function
	Definition
	Convex and Concave Examples
	Trick 1: Restriction of a convex function to a line
	Trick 2: Extended-value extension
	Trick 3.1: First-Order Condition
	Trick 3.2: Second-Order Conditions
	Epigraph and Sublevel Set
	Jensen's Inequality
	Brief Summary: How to prove convexity?
	Operations that Preserve Convexity
	The Conjugate Function
	Quasiconvex Functions (1/3 Generalization)
	Log-concave and Log-convex Functions (2/3 Generalization)
	Convexity with respect to Generalized Inequalities (3/3 Generalization)

	Convex Optimization Problems
	Optimization Problem in Standard Form
	Convex Optimization Problems
	Quasiconvex Optimization
	Linear Optimization (LP)
	Quadratic Optimization (QP, SOCP, QCQP)
	Geometric Programming (GP)
	Generalized Inequality Constraints
	Semidefinite Program (SDP)
	Vector Optimization

	Duality
	Lagrangian
	Lagrange dual function
	Lagrange dual and Conjugate Function
	(Lagrange) dual problem
	Weak and strong duality
	Slater's Constraint Qualifications
	Geometric interpretation
	Optimality Conditions: Complementary Slackness
	Optimality Conditions: Karush-Kuhn-Tucker (KKT) Conditions
	Perturbation and sensitivity analysis
	Generalized inequalities

	Approximation and fitting
	Norm approximation
	Least-norm problems
	Regularized approximation
	Robust approximation

	Statistical estimation
	Maximum likelihood estimation (MLE)
	Optimal detector design
	Experiment design

	Geometric problems
	Extremal volume ellipsoids
	Centering
	Classification

	Unconstrained minimization
	Terminology and assumptions
	Gradient descent method
	Steepest descent method
	Newton's method gradient
	Newton decrement
	Newton's method
	Classical Convergence Analysis for Newton method
	Newton Method and Cholesky factorization

	Equality constrained minimization
	Eliminating equality constraints
	Newton's method with equality constraints
	Infeasible start Newton method
	Implementation of the Newton Method

	Interior-point methods
	Inequality constrained minimization
	Logarithmic barrier function and central path
	Barrier method
	Feasibility and phase I methods
	Complexity analysis via self-concordance
	Generalized inequalities
	Primal-dual interior-point methods

	Exercise and Examples Conclusions
	Basic Settings
	About Vectors

	Math Tools
	Cauchy-Schwarz Inequality
	Jensen's Inequality

	Proof Routines
	To prove convex set
	To prove convex function
	To prove quasiconvex / quasiconcave / quasilinear
	Relaxations on Constraints' Expressions
	Lagrangian, Dual, KKT

	Matrix Tricks
	Dealing with S+n or S++n
	A useful fact
	Some Useful Equations about Trace
	Eigenvalue Decomposition

