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ABSTRACT

This is the course project report of ECE236C, Spring 2019. I am implementing and testing algorithms
that utilize convex optimization methods to accelerate non-convex optimization problems. To be
specific, I only focus on CNN (convolutional neural network), and implemented the models in
PyTorch. 2 Similar optimizers should also be easily applied to GNN (graph neural network), a
very popular extension of CNN on general node-link graphs. The results will be discussed in the
discussion section.
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1 Introduction

This is the final report of ECE236C, UCLA, done in 2019 Spring semester, instructed by Prof. Vandenberghe.

I’ve taken the ECE236 series so as to gain a better understanding in the optimization problems, which is expected to be
helpful latter in my research works.

Most recently I focus on deep learning models, which means that I am working on the neural networks (NN), not that
easily related to the standard convex optimization problems. However, in practice, we realize that we are actually using
convex optimization tricks, such as Stochastic Gradient Descent (SGD). Unlike convex optimization problems, learning
on NN could easily fail for many different reasons. Most importantly, it is not robust at all to its hyper-parameters,
such as the learning rate. When the learning rate is too big, the model couldn’t learn at all. These shortcomings, in
my opinion, beside the nature of SGD, has something to do with that they are naturally non-convex models. One
experimental evidence of my claim on “it has something to do with the nature of SGD” is that, Newton methods are
generally robust to the parameters, given the same model. 3 I am curious about if these improved methods would
achieve better robustness in hyper-parameter settings.

My goal is to analyze and implement the algorithm proposed in [1] and [2], together with some modified version
and some more basic algorithm (such as the Nesterov’s standard acceleration algorithm) and apply it to a simple
Convolutional Neural Network (CNN) model to check the outcomes.

Basically, I am interested in:

∗This is the ECE236C final project report, Spring 2019, instructed by Prof. Lieven Vandenberghe, and also lots of thanks to TA
Xin Jiang.

2https://github.com/PatriciaXiao/AcceleratedSGDMethods
3Those are conclusions I came up from doing another optimization-related course’s projects this quarter, Optimization Methods

for Deep Learning, course website https://www.csie.ntu.edu.tw/~cjlin/courses/optdl2019/.

https://github.com/PatriciaXiao/AcceleratedSGDMethods
https://www.csie.ntu.edu.tw/~cjlin/courses/optdl2019/
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• The method’s limitations, such as, is it robust, or very sensitive to initialization, are there certain cases where
this method will completely not work at all? 4

• In what cases does each of them works the best.

My implementation of the models is posted on my Github repository at https://github.com/PatriciaXiao/
AcceleratedSGDMethods.

2 Related Work

Yair et al. proposed an accelerated gradient method in [1], which applies to general optimization problem:

minimize f (x)

where f : Rd → R may be non-convex, as long as it has L1-Lipschitz continuous gradient and L2-Lipschitz continuous
Hessian.

In [2], negative curvature descent is further dig into, and it is claimed to be helpful manner of escaping the small-gradient
regions.

There are also other works such as [3], following another trend, introducing a proximal version of an existing primal-
dual method and accelerate the method by applying an inner-outer iteration procedure. They focus mostly on simpler
problems such as SVM and logistic regression, and it’ll be hard to apply this kind of methods to non-convex models
with complex structures, such as the neural networks in general.

In [4] the Lipschitz continuity on Neural Network is discussed. Basically they showed that, although the exact Lipschitz
computation is NP-hard, there could be an algorithm that could find a Lipschitz upper bound through automatic
differentiation, called AutoLip. Furthermore, they applied this algorithm they proposed, together with some detailed
analysis on each type of layers in the standard neural networks, and conclude that it is computable. However, neither L1
nor L2 bounds was mentioned or estimated.

In another work [5], Lipschitz bound was connected with Neural Networks again, but still,it is hopeless in terms of
computing the exact values of the L1 and L2 bounds we need.

It would be the best if we make those bounds into parameters. We assume that they exist in the first place.

Another important work to mention is [6], where Nesterov’s accelerated gradient method, which is referred to as
“function Accelerated-gradient-descent” in section 2.1 of [1] and should be regarded as a base method of all the other
algorithms, was derived as a momentum method. We could thereby implement the method accordingly, while try
rephrasing the other algorithms using similar methods.

There’s also some discussions on the limitations of the existing gradient methods [7]. Previously, with a toy CNN model
and standard MNIST dataset, Adam + MSE loss doesn’t work at times using certain parameters, namely, under certain
learning rate. Adam should be, theoretically, a stable and efficient method for acceleration, and looking into the reason
why it fails should be helpful.

3 Dataset

There are some standard, light-weight dataset that are guaranteed to have reasonable distribution and good features to
learn with. Such as MNIST and CIFAR10.

Those are standard datasets readily available everywhere.

While debugging and playing tricks on small, toy dataset, MNIST is more helpful, since it is really simple, containing
only hand-written numbers (0∼ 9) with labels. However, almost all kinds of optimizers, all kinds of settings, work out
well on this super-simple dataset. To show the difference among the settings, CIFAR10 dataset is needed, for it is more
complex, having more channels (RGB) in the input images (10 categories are harder to distinguish here, such as bird,
car, etc.).

4 Algorithm

This is also closely related with our course content of Accelerated proximal gradient methods (in lecture 7 note).

4I am pretty sure that Adam isn’t working in some situations.
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Among Nesterov’s works in the early years [8], there’s a very popular Accelerated Gradient method, which is mentioned
and based the other algorithms on in [1].

This method was basically proposed in [1] as:

f u n c t i o n A c c e l e r a t e d−g r a d i e n t−d e s c e n t ( f ,z1,ε,L1,σ1 )

κ = L1
σ1

f o r j = 1,2, . . . ,∞ :
i f ‖∇ f (z j)‖ ≤ ε

r e t u r n z _ j
e l s e

y j+1 = z1− 1
L1

∇ f (x j)

z j+1 =
(

1+
√

κ−1√
κ+1

)
y j+1−

√
κ−1√
κ+1 y j

where ε and σ1 are parameters, and L1 is a bound ( f is L1-smooth), z1 is an initialized iterate, and f is a strongly convex
function in this original expression.

It is also proved that if z1 satisfies f (z1)− infx f (x) ≤ ∆ f (∆ f is the optimality gap of f ), then the algorithm is
guaranteed to converge within finite number of steps, and the upper-bound of the iterations is bounded by the parameters
L1,σ1,ε,∆ f .

In our slides, it has another form of expression, where x0 = v0, θ0 ∈ (0,1], k being the iterator, and then repeatedly
calculate the positive root of the following quadratic equation as θk:

θ 2
k

tk
= (1−θk)γk +mθk γk =

θ 2
k−1

tk−1

and y = x0 if k = 0, update xk and vk as:

y = xk +
θkγk

γk +mθk
(vk− xk)

xk+1 = proxtkh(y− tk∇g(y))

vk+1 = xk +
1
θk

(xk+1− xk)

Also in our slides, the momentum interpretation is shown as:

y = xk +
θkγk

γk +mθk
(vk− xk) = xk +βk(xk− xk−1)

where

βk =
θkγk

γk +mθk

( 1
θk−1

−1
)
=

tkθk−1(1−θk−1)

tk−1θk + tkθ 2
k−1

This could be also shown following the same method as is proposed in [6], we have another form of Nesterov’s
Accelerated Gradient, and the proof is in their Appendix A.1. That is a different perspective expressing the same standard
Nesterov’s accelerated gradient method coming to the same conclusion.

All in all, what is so good about this momentum interpretation is that it naturally extend this method so that it
could be applied to non-convex cases, and on the other hand, simplified the parameters so as to make it practical for
implementation.

Assuming that momentum βk is constant and learning rate γ is also constant, specifying the maximum number of
iterations for learning as T and initialize x as x0, we simplify and rephrase the algorithm into:

f u n c t i o n A c c e l e r a t e d−g r a d i e n t−d e s c e n t ( f ,γ,β ,x0,T )
y0 = x0
f o r k = 0,1,2, . . . ,T −1 :

yk+1 = xk− γ∇ f (xk)
xk+1 = yk+1 +β (yk+1− yk)

r e t u r n xT

3
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From [1], the Almost-convex-AGD, as an extension of the standard Accelerated-gradient-descent, basically changes the
objective function, so that the optimization problem becomes:

minimize g j(x) = f (x)+ γ‖x− xk‖2

at the kth iteration. The reason for doing so is to make the γ-almost-convex function f being γ-strongly convex. It is
also obvious that in recent neural network structures, it is hopeless to compute an exact γ here. But we could estimate
its impact on the momentum interpretation, based on that:

∇g j(x) = ∇ f (x)+ γ(x− xk)

and thus,
∇g j(xk) = ∇ f (xk)

Plugging it back into the previous expression, we conclude that, although mathematically the Almost-convex-AGD
is an extension of the standard Accelerated-gradient-descent, and they have different properties in theory, but when
making them practical, say, implemented by momentum, we have the same expression.

f u n c t i o n Almost−convex−AGD( f ,γ,β ,x0,T )
y0 = x0
f o r k = 0,1,2, . . . ,T −1 :

yk+1 = xk− γ∇ f (xk)
xk+1 = yk+1 +β (yk+1− yk)

r e t u r n xT

One thing to notice is that, the γ we used as step-size and the γ we used to express “almost-convex” are not the same
thing. The γ shows up in pseudo code is always the step size. We’re no longer talking about the “almost-convex” thing
from this point on.

Another important base algorithm in [1] is the Negative curvature descent method, which is also essential in [2].

This algorithm involves some computation. As is directly from the paper [1], we have the algorithm as:

f u n c t i o n Nega t ive−c u r v a t u r e−d e s c e n t ( z1, f ,L2,α,∆ f ,δ )
δ ′ = δ

1+
12L2

2∆ f
α3

f o r j = 1,2, . . . ,∞ :
F ind v j such t h a t :

1 . ) ‖v j‖= 1
2 . ) P[λ (∇2 f (z j))≥ vT

j ∇2 f (z j)v j− α

2 ]≥ 1−δ ′

( use a p p r o x i m a t e l e a d i n g e i g e n v e c t o r c o m p u t a t i o n a l g o r i t h m )
i f vT

j ∇2 f (z j)v j ≤−α

2

z j+1 = z j−
2|vT

j ∇2 f (z j)v j |
L2

sign(vT
j ∇ f (z j))v j

e l s e
r e t u r n z j

Previous works have brought some insights into the usage of the negative curvature descent. In [2], it is clearly stated
that, based on the division of the entire domain of the objective function into small and large gradient regions, they
perform only gradient descent based procedure in the large gradient region, and only negative curvature descent in the
small gradient region. Their analysis also shows that it could escape the small gradient region in only one negative
curvature descent step whenever entering the region.

Following similar ways like Algorithm 3 from [2], first of all, we simplify the parameters. This step would be useful for
implementation.

Instead of letting those variables being random values, we have α → 0, thus δ ′→ 0 and δ is also omitted. Furthermore,
v j is computed by using ApproxNC-Stochastic algorithm.

Previously, finding a v is equivalent with finding an element from the following problem’s feasible set:

minimize 0
subject to ‖v‖2 = 1

λ (∇2 f (z j))≥ vT
j ∇

2 f (z j)v j

4
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The ApproxNC-Stochastic algorithm will return:

v̂ =

{
⊥ λmin(∇

2 f (z j))≥−εH

else ‖v‖2 = 1,− εH
2 ≥ vT

j ∇2 f (z j)v j

which will perfectly fit for our usage by setting εH =α . Previously I claimed that we want to simplify the implementation
by setting α → 0, then the same applies to εH . For details, this is the online Neon2 method proposed in [9].

In general, we simplify the previous expression into:

f u n c t i o n Nega t ive−c u r v a t u r e−d e s c e n t ( f ,x0,η ,T2,δ ,εH )
f o r j = 0,1,2, . . . ,T2−1 :

v̂ j+1 = ApproxNC−S t o c h a s t i c ( f ,x j,δ ,εH )
i f v̂ j+1 6=⊥

x j+1 = x j +ηsign(−vT
j ∇ f (z j))v j

e l s e
r e t u r n x j

r e t u r n xT2

where T2 is the maximum number of iterations in negative curvature descent calculation.

The algorithm we have in [1] put them together, by having:

f u n c t i o n A c c e l e r a t e d−non−convex−method ( f ,x0,η ,γ,β ,T,T2,δ ,εH ,ε )
f o r k = 1,2, . . . ,T

x̂k = Nega t ive−c u r v a t u r e−d e s c e n t ( f ,xk−1,η ,T2,δ ,εH )
xk+1 = Almost−convex−AGD( f ,γ,β , x̂k,T )
i f ‖x̂k− xk+1‖< ε

r e t u r n xk+1
r e t u r n xT

In fact, when it is not simplified this much, ε = α

L2
.

There’s another algorithm from [2], which basically applies standard optimizer (such as SGD or Adam, etc.) for certain
steps, and then, check the gradient, if the gradient is small, call the negative curvature descent optimizer for gradient
region, escaping the small-gradient area in only one negative curvature descent step. This method is called GOSE.

And there naturally comes an idea that, how about combining the two, GOSE idea of checking at certain interval so as
to use negative curvature descent to escape small gradient areas, and the AGD together? I also tried this out, and will be
discussed in following sections.

5 Implementation

My code is released on Github at https://github.com/PatriciaXiao/AcceleratedSGDMethods, it is
a public repository. Due to the time-limitation issues, it is not yet tested against other environment, but it is guaranteed
to work under macOS 10.13.3 with Python 3.7 and PyTorch 1.0.1.post2.

Using Python3.7 and the PyTorch library, I work on implementing the new optimization algorithms. 5

The network structures are fixed to be the same as specified in CS269 by Prof. Lin. 6 That is, the model has three
convolutional layers followed by a fully-connected layer. The detailed structure is as specified in the code.

Fortunately, there’s an existing implementation of GOSE on Github, 7 although a little bit buggy and mostly outdated,
thus some efforts were made to correct and addapt part of their code into mine, it saved me a lot of time from
implementing the troublesome negative-curvature-descent.

The loss function is chosen to be the most-commonly used one in the entity-classification tasks: the cross-entropy loss.

As for learning rate, I tested 0.3, 0.03, 0.003, 0.0003 for CIFAR10, and 0.2, 0.02, 0.002, 0.0002 for MNIST.
5Regarding implementation of optimization algorithm, How could I design my own optimizer scheduler, Custom Optimizer in

PyTorch
6https://www.csie.ntu.edu.tw/~cjlin/courses/optdl2019/
7https://github.com/uclaml/GOSE/blob/master/cnn_gose.py

5

https://github.com/PatriciaXiao/AcceleratedSGDMethods
https://discuss.pytorch.org/t/regarding-implementation-of-optimization-algorithm/20920
https://discuss.pytorch.org/t/how-could-i-design-my-own-optimizer-scheduler/26810
https://discuss.pytorch.org/t/custom-optimizer-in-pytorch/22397/3
https://discuss.pytorch.org/t/custom-optimizer-in-pytorch/22397/3
https://www.csie.ntu.edu.tw/~cjlin/courses/optdl2019/
https://github.com/uclaml/GOSE/blob/master/cnn_gose.py
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6 Results and Discussion

Give in to the time limit (we are due soon), I run only 6 epochs for each setting, repeat 3 times on CIFAR10 and 2 times
on MNIST. In practice, if given adequate time, we should run at least 200 epochs on each setting, and repeat at least 6
times to get rid of the impact of randomness.

6.1 The Models

There are five different kinds of algorithms, applying them get different outcomes. Standard SGD works well, and
Accelerated Gradient Descent (with Nesterov’s algorithm in momentum form) turns out to be more stable (and also
faster). ANCM (the algorithm proposed in [1]) shows a very stable trend of increasing, and it is clearly not converged
yet, unlike standard SGD, whose accuracy almost starts dropping. GOSE is more stable than standard SGD and
generally works a little bit better than the standard version.

By combing the GOSE idea of checking upon a certain interval and utilize NCD (negative curvature descent) to escape
the small gradient area, and ANCM’s idea of utilizing AGD, we have a combined approach, which runs almost as fast
as GOSE (which is 1.5 times slower than standard SGD), and shows better test accuracy.

Comparing the outcome of the models, I plotted several plots.
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Figure 1: Loss on MNIST dataset
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Figure 2: Loss on CIFAR10 dataset

The loss every step on the two datasets are as shown in Figure 1 and 2 respectively.
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Figure 3: Accuracy on MNIST dataset
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Figure 4: Accuracy on CIFAR10 dataset

The test accuracy on the two datasets are as shown in Figure 3 and 4 respectively (epoch-level).

6
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Note that I’ve plotted the test accuracy using error bar. Zooming them in, we see Figure 5 and 6. Those images shows
the detailed difference more precisely.
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Figure 5: Test Accuracy on MNIST dataset, zoomed-in.
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Figure 6: Test Accuracy on CIFAR10 dataset, zoomed-in.

6.2 Parameter Adaption

It is needless to say that in this case, actually the parameters need adaption, including momentum and learning rate and
all thresholds etc.

The reason why I have this statement is that, as is discussed in previous papers, especially the theoretical analysis
in [1], it claims that those parameters aren’t randomly selected. Instead, the parameters we have came from some
transformation from the unknown and almost immeasurable L1 and L2 values and other properties like such. In practice,
I have no other choice but making them into hyper-parameters.

The model definitely needs tuning. We need to adapt the hyper-parameters so as to get the best performance and fulfill
its powerfulness. However, time is limited this quarter, and other projects have taken too much computational resources
these days, all those issues made it impossible for me to tune it carefully.

As I said, I’ve put my code on Github, if anyone is interested in these algorithms, please feel free to use it, and modify it
if needed.

6.3 Running Time

The accelerated algorithms aren’t necessarily running faster each epoch. Among them all, the most basic accelerated
gradient descent from Nesterov still pops out. It has promising outcomes in general, and wouldn’t bring heavy burden
to the training time.

The barrier of the running time lies in calling Negative-curvature-descent. Whenever it is called, in GOSE, in ANCM,
or in combined method, it always slows down the whole process dramatically. However, one interesting finding is that
although generally speaking, the more inner iteration and the more epochs used to calculate the negative curvature
descent affect the running time, their influences aren’t significant. The most significant property is how many times we
call the Negative-curvature-descent, no matter what parameters we set for this call.

Average running time for each algorithm is as listed in Table 1.

6.4 Robustness to Learning Rate

CIFAR10 fails on learning rate 0.3 whatever algorithm used, as long as it is SGD-based. It fails entirely: whenever
learning rate is 0.3, the loss will be exploded and becomes nan within the first epoch. Same thing happens to MNIST
with learning rate 0.2.

This phenomenon indicates that SGD-family is generally not robust to hyper-parameters, especially learning rate. And
this issue wouldn’t be solved by applying the new algorithms we have.

7
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DATASET ALGORITHM TIME (s)
MNIST standard SGD 101.8398

accelerated AGD 100.1971
GOSE 150.2517
ANCM 911.5307

combined (GOSE + ANCM) 152.0238
CIFAR10 standard SGD 102.7590

accelerated AGD 104.7911
GOSE 155.1117
ANCM 943.9628

combined (GOSE + ANCM) 160.1029
Table 1: Average Running Time per Epoch

Since the number of epochs we run is too limited, having too small a learning rate is not a good idea, since smaller
learning rate (or step size) will typically converge slower. That is why I finally reported only the results with lr = 0.02
for MNIST and lr = 0.03 for CIFAR10. They are the largest learning rates that work.

6.5 Future Work

In fact, in previous experiments done in Prof. Lin’s Deep-Learning Optimization course (CS269 Spring 19), we
observed that the test accuracy might drop after several hundreds of epochs, using the same model as I implemented in
this project’s code.

Could it be the case that the SGD algorithm was trapped in local minimum and couldn’t come out? If that is the
case, wouldn’t it be helpful if we apply the algorithms we have for now to learn the parameters? I mean, the negative
curvature descent, as is stated in [2], should be helpful in escaping the local minimal areas.

It is worthwhile running, say, 500 epochs, when time permitted, and see if this assumption is correct.

Also, I observed that the bottleneck of the performance lies in the calculation of the negative curvature descent. If
we manage to find a proximal solution or any ways of solving it faster, then these algorithms will all be dramatically
accelerated.
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