Machine Learning Algorithms (CS260) Cheat Sheet By Patricia Xiao

Learnability Theorems Overview

For binary classification, where $\mathcal{Y} = \{-1, +1\}$, error of h with respect to f is (PAC) :

$$
L_{\mathcal{D},f}(h) = \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq f(x)]
$$

= $\mathcal{D}(\{x \in \mathcal{X} : h(x) \neq f(x)\})$

That of agnostic PAC:

$$
L_{\mathcal{D},f}(h) = \mathbb{P}_{(x,y)\sim\mathcal{D}}[h(x) \neq y]
$$

= $\mathcal{D}(\{(x,y) \in \mathcal{X} \times \mathcal{Y} : h(x) \neq y\})$

Important background knowledge include:

- 1. i.i.d. Independently Identically Distributed, Each x_i is sampled independently according to \mathcal{D} .
- 2. **Empirical Risk** $L_S(h) = \frac{|i \in [m]: h(x_i) \neq y_i|}{m}$ (m is the training set size), finding a predictor h that minimizes ER is called ERM (Empirical Risk Minimization).

Formula

- 1. $(1-\epsilon)^m \approx e^{-\epsilon m}$, $(1-x) \le e^{-x}$
- 2. (Union Bound) $\mathcal{D}(A \cup B) \leq \mathcal{D}(A) + \mathcal{D}(B)$
- 3. PAC & agnostic PAC: $m_{\mathcal{H}}(\epsilon, \delta) = \frac{1}{\epsilon} log(\frac{|\mathcal{H}|}{\delta})$ $\frac{\pi}{\delta}$)
- 4. $∀$ finite H is agnostically PAC learnable with: $m_{\mathcal{H}}(\epsilon,\delta) \leq \lceil \frac{2}{\epsilon^2} log(\frac{2|\mathcal{H}|}{\delta}) \rceil$ $\frac{\mu_{\parallel}}{\delta})$]
- 5. $m_{\mathcal{H}}(\epsilon, \delta) \leq m_{\mathcal{H}}^{UC}(\epsilon/2, \delta)$; every $\mathcal H$ with uniform convergence property is agnostic PAC learnable.

6.
$$
m_{\mathcal{H}}^{UC}(\epsilon, \delta) \leq \lceil \frac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2} \rceil
$$

- 7. $m_{\mathcal{H}}^{NUL}(\epsilon, \delta, h) \leq \frac{-\log(w(h)) + \log(2/\delta)}{2\epsilon^2}$ $\frac{2e^{2}}{2e^{2}}$ where H is the class of all computable functions, not PAC learnable but NU learnable, MDL.
- 8. In SRM settings, $m_{\mathcal{H}}^{NUL}(\epsilon, \delta, h)$ is upperbounded by $\min_{n:h \in \mathcal{H}_n} C^{\frac{d_n - \log(w(h)) + \log(1/\delta)}{\epsilon^2}}$.
- 9. Validation set V and $\ell \in [0, 1], |L_V (h) |L_{\mathcal{D}}(h)| \leq \sqrt{\frac{\log(2/\delta)}{2m_v}}, 2|\mathcal{H}|$ if optimized \widehat{h} .
- 10. For a finite class H , $VCdim(\mathcal{H}) \leq \log_2(|\mathcal{H}|)$

11.
$$
\sqrt{a^2 - b^2} \le \sqrt{(a+b)^2} = a+b
$$

Realizability Assumption

There exists $h^* \in \mathcal{H}$ such that $L_{(\mathcal{D},f)}(h^*) = 0$. It implies that, with probability of 1 over random sample $S, L_S(h^*) = 0.$

No Free Lunch Theorem

Fix $\delta \in (0,1)$, $\epsilon \in (0,1/2)$. \forall learner A and training set size m, $\exists \mathcal{D}, f$ such that:

$$
\mathbb{P}(L_{\mathcal{D},f}(A(S)) \geq \epsilon) \geq \delta
$$

not better than a random guess at 1/2

ϵ - representative sample

A training set S is ϵ - representative when it holds that:

 $\forall h \in \mathcal{H}, |L_S(h) - L_{\mathcal{D}}(h)| \leq \epsilon$

Hints on Proofs

- 1. PAC: Consider the bad hypothesis class \mathcal{H}_B and misleading samples M.
- 2. Uniform Convergence:

 $\forall h \in \mathcal{H}$, $L_{\mathcal{D}}(h_S) \leq L_S(h_S) + \epsilon^*$ $\leq L_S(h) + \epsilon^*$ $\leq L_{\mathcal{D}}(h) + \epsilon^* + \epsilon^*$

- 3. Finite class sample complexity upper bound: same with prove that $m_{\mathcal{H}}^{UC}(\epsilon, \delta) \leq \lceil \frac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2} \rceil$, and then use the Hoeffding's inequality to bound $\mathcal{D}^m(\cdots > \epsilon) \leq 2 \exp(-2m\epsilon^2)$; Union bound and that's it.
- 4. Proof of $|L_V(h) L_{\mathcal{D}}(h)|$: use Hoeffding's Inequality.
- 5. Kraft's Inequality: consider generating an expression as flipping coins or other random process, then $\mathbb{P}(\sigma) = \frac{1}{2^{|\sigma|}}$
- 6. Minimum Description Length (MDL) bound proof: Make $\delta_h = w(h) \cdot \delta$ for each h; Apply Hoeffding to show that for each h, $\mathcal{D}^m(\lbrace S \rbrace)$: $L_{\mathcal{D}}(h) > L_{S}(h) + \sqrt{\frac{\log(2/\delta_{h})}{2m}}\}) \leq \delta_{h}$; apply union bound to get altogether they are $\sum \delta_h \leq$ δ.

Hoeffding's Inequality

Let $\theta_1, \ldots \theta_m$ be a sequence of i.i.d. random variables that satisfies:

1. $\forall i, \mathbb{E}[\theta_i] = \mu$

2.
$$
\forall i, \mathbb{P}[a \le \theta_i \le b] = 1
$$

Then $\forall \epsilon > 0$,

$$
\mathbb{P}[\left|\frac{1}{m}\sum_{i=1}^{m}\theta_{i}-\mu\right|>\epsilon] \leq 2\exp(-2m\epsilon^{2}/(b-a)^{2})
$$

where
$$
exp(x) = e^x
$$
.

Markov's Inequality

 $\mathbb{P}[Z \geq a] \leq \frac{\mathbb{E}[Z]}{A}$ a specifically, when $a \in (0,1)$ and $Z \sim [0,1]$, assume

that $\mathbb{E}[Z] = \mu$, we have:

$$
\mathbb{P}[Z > a] \ge \frac{\mu - a}{1 - a} \ge \mu - a
$$

k-fold cross validation

- divide the training dataset into k folds, use one fold as validation set, the rest for training
- a method of selecting the best parameters before going testing
- use the average of all the selections of $i \in$ $\{1, \ldots k\}$'s error to be the estimated error of a parameter set

Error Decomposition

$$
L_{\mathcal{D}}(h_S) = \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + (L_{\mathcal{D}}(h_S) - \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h))
$$

- 1. The approximation error: $\epsilon_{app} = \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$
	- bring in by restriction of H
	- independent from S
	- decreases with complexity of H (denoted by size or VCdim)
- 2. The estimation error: $\epsilon_{est} = L_{\mathcal{D}}(h_S)$ $\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$
	- Result of L_S being only an estimation of L_D
	- Decreases with the size of S
	- Might increase with the complexity of H .

VC Dimension

 H Shatters C means that all possible value of a given set C could be explained by a hypothesis from class $\mathcal{H}, |\mathcal{H}_C| \leq 2^{|C|}$, where $|\mathcal{H}_C|$ is the restriction of H to C.

 $VCdim(H) = sup\{|C|: \mathcal{H} \; shatters \; C\}$

Given that $(\mathbf{x}, y) \sim \mathcal{D}$, regression loss-function $\ell(h, (\mathbf{x}, y)) = (h(\mathbf{x}) - y)^2.$ The expected loss is: Bias-Variance Decomposition for Regression

$$
L_{\mathcal{D}}(h) = \mathbb{E}_{\mathcal{D}}[\ell(h, (\mathbf{x}, y))]
$$

=
$$
\int \int (h(\mathbf{x}) - y)^2 p(\mathbf{x}, y) d\mathbf{x} dy
$$

=
$$
\int (h(\mathbf{x}) - h^*(\mathbf{x}))^2 p(\mathbf{x}, y) d\mathbf{x}
$$

+
$$
\int \int (h^*(\mathbf{x}) - y)^2 p(\mathbf{x}, y) d\mathbf{x} dy
$$

The expectation

$$
\mathbb{E}_{S}[L_{\mathcal{D}}(h)] = \mathbb{E}_{S}[\mathbb{E}_{\mathcal{D}}[\ell(h, (\mathbf{x}, y))]]
$$

= $\mathbb{E}_{S}[\int (h_{S}(\mathbf{x}) - h^{*}(\mathbf{x}))^{2} p(\mathbf{x}) d\mathbf{x}]$
+ $\int \int (h^{*}(\mathbf{x}) - y)^{2} p(\mathbf{x}, y) d\mathbf{x} dy$

where $\int \int (h^*(\mathbf{x}) - y)^2 p(\mathbf{x}, y) d\mathbf{x} dy$ is the noise and:

$$
\mathbb{E}_{S}[\int (h_{S}(\mathbf{x}) - h^{*}(\mathbf{x}))^{2} p(\mathbf{x}) d\mathbf{x}]
$$

=
$$
\int (\mathbb{E}_{S}[h_{S}] - h^{*}(\mathbf{x}))^{2} p(\mathbf{x}) d\mathbf{x}
$$

+
$$
\int \mathbb{E}_{S}[(h_{S}(\mathbf{x}) - E_{S}[h_{S}(\mathbf{x})])^{2}] p(\mathbf{x}) d\mathbf{x}
$$

where the first part is $bias²$ and the second part is the variance.

Growth Function

The growth function of $\tau_{\mathcal{H}}(m)$ is defined as:

$$
\tau_{\mathcal{H}}(m)=\max_{C\subset\mathcal{X}, |C|=m}|\mathcal{H}_C|
$$

 $\tau_{\mathcal{H}}(m)$ the number of different functions from a set C of size m to 0, 1 that can be obtained by restricting H to C .

If $VCdim(\mathcal{H}) = d$ then for any $m \leq d$ we have $\tau_{\mathcal{H}}(m) = 2^m$, H induces all possible functions from C to 0,1.

Given $VCdim(\mathcal{H}) \leq d \leq \infty$, then for all $C \subset \mathcal{X}$ s.t. Sauer-Shelah-Perles-Vapnik-Chervonenkis Lemma

 $|C| = m > d + 1$, we have:

$$
|\mathcal{H}_C|\leq (\frac{em}{d})^d
$$

Fundamental Theorem of Learning

H is a class of binary classifiers with $VCdim(\mathcal{H}) = d$. Then there are absolute constants C_1 and V_2 such that the sample complexity of PAC learning $\mathcal H$ is:

$$
C_1 \frac{d + \log(1/\delta)}{\epsilon} \le m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d \log(2/\epsilon) + \log(1/\delta)}{\epsilon}
$$

And this sample complexity is achieved using ERM rule.

Prior Knowledge

Described as hypothesis class $\mathcal H$ in PAC learning and uniform learning. However there are other ways of expressing it, such as bias to shorter expressions. Generally, bias could be denoted as a weight $w(h)$ assigned to each hypothesis in a countable hypothesis class H . The weight reflects prior knowledge on the importance of each h.

$$
\sum_{h\in\mathcal{H}} w(h)\leq 1
$$

An example is the description length.

Description Length

- Description language is denoted by $d(h)$
- The term **prefix-free** means that $\forall h \neq h', d(h)$ is not a prefix of $d(d')$; could always be achieved by including "end-of-word" symbol.
- Let |h| be the length of $d(h)$
- Then, set $w(h) = 2^{-|h|}$
- $\sum_h w(h) \leq 1$ according to **Kraft's inequality**.

Kraft's Inequality

If $S \subset \{0, 1\}$ is a prefix-free set of strings, then:

$$
\sum_{\sigma \in S} \frac{1}{2^{|\sigma|}} \le 1
$$

Minimum Description Length (MDL) bound

Let $w : \mathcal{H} \to \mathbb{R}$ be such that $\sum_{h \in \mathcal{H}} w(h) \leq 1$. Then with prob $\geq 1 - \delta$ over $S \sim \mathcal{D}^m$ we have:

$$
\forall h \in \mathcal{H}, L_{\mathcal{D}}(h) \le L_{S}(h) + \sqrt{\frac{-\log(\mathbf{w}(\mathbf{h})) + \log(2/\delta)}{2m}}
$$

Compared with VC bound:

$$
\forall h \in \mathcal{H}, L_{\mathcal{D}}(h) \le L_S(h) + \sqrt{\frac{\mathbf{VCdim}(\mathcal{H}) + \log(2/\delta)}{2m}}
$$

Minimizing VC bound: ERM rule; Minimizing MDL bound: MDL rule.

Minimum Description Length (MDL) Guarantee
For every
$$
h \in \mathcal{H}
$$
, w.p. $\geq 1 - \delta$ over $S \sim \mathcal{D}^m$ we have:

$$
L_{\mathcal{D}}(MDL(S)) \leq L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}}
$$

$$
\leq L_{\mathcal{D}}(h) + 2\sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}}
$$

Note than VC dim could be infinite.

Condition of NU Learnable

A class $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ is non-uniform learnable if and only if it is a countable union of PAC learnable hypothesis classes.

Structural Risk Minimization (SRM)

$$
SRM(S) \in \underset{h \in \mathcal{H}}{\operatorname{argmin}} [L_S(h) + \underset{n:h \in \mathcal{H}_n}{\min} \sqrt{C \frac{d_n - \log(w(n)) + \log(1/\delta)}{m}}
$$

where $w(n) = w(\mathcal{H}_n)$

Suppose: $\mathcal{H} = \bigcup_n \mathcal{H}_n$, where $VCdim(\mathcal{H}_n) = n$. The Cost of Weaker Prior Knowledge

- If, for some $h^* \in \mathcal{H}_n$ has $L_{\mathcal{D}}(h^*) = 0$, we can apply ERM so the sample complexity is $C \frac{n + \log(1/\delta)}{\epsilon^2}$ ϵ^2
- Without the prior knowledge, sample complexity will be $C \frac{n + \log(\pi^2 n^2/6) + \log(1/\delta)}{\epsilon^2}$ $\overline{\epsilon^2}$

Condition of NU Learnable: Proof

Assume that H is non-uniform learnable with sample complexity $m_{\mathcal{H}}^{NUL}$

- For every $n \in \mathbb{N}$ let $\mathcal{H}_n = \{h \in \mathcal{H} :$ $m_{\mathcal{H}}^{NUL}(\frac{1}{8},\frac{1}{7},h) \leq n\},\$ then clearly $\mathcal{H} = \cup_{n\in\mathbb{N}}\mathcal{H}_n$
- For every $\mathcal D$ s.t. $\exists h \in \mathcal H_n$ with $L_{\mathcal D}(h) = 0$, we have that $\mathcal{D}^n(\lbrace S: L_{\mathcal{D}}(S(S)) \leq \frac{1}{8} \rbrace) \geq \frac{6}{7}$
- The fundamental theorem of statistical learning implies that each \mathcal{H}_n has finite VC dimension d_n , each of them is agnostic PAC learnable.
- Choose a proper weight so that $\sum_n w(n) \leq 1$ and apply it to $w(n) = w(\mathcal{H}_n)$. One example is $w(n) = \frac{6}{\pi^3 n^2}$ since sum up from 1 to ∞ it adds up to 1.

• Choose
$$
\delta_n = \delta \cdot w(n)
$$
 and $\epsilon_n = \sqrt{C \frac{d_n + \log(1/\delta_n)}{m}}$.

- By the fundamental theorem, for every n , $\mathcal{D}^m({S : \exists h \in \mathcal{H}_n, L_{\mathcal{D}}(h) > L_S(h) + \epsilon_n}) \leq \delta_n.$
- Apply union bound, $\mathcal{D}^m({S : \exists n,h \in \mathbb{R}^m})$ $\mathcal{H}_n, L_{\mathcal{D}}(h) > L_S(h) + \epsilon_n \}$) $\leq \sum_n \delta_n \leq \delta$.

SRM Guarantee Proof

By NUL, we have:

]

$$
L_{\mathcal{D}}(SRM(S)) \le L_{S}(SRM(S)) + \min_{n:h \in \mathcal{H}_n} \sqrt{\frac{-\log(w(SRM(S))) + \log(2/\delta)}{2m}}
$$

By the optimality of SRM, we have:

above right hand side

$$
\leq L_S(h) + \min_{n:h \in \mathcal{H}_n} \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}}
$$

Claim: For any infinite domain set $\mathcal{X}, \mathcal{H} = \{0, 1\}^{\mathcal{X}}$ is not a countable union of classes of finite VCdimension, hence such H are not non-uniformly learnable.

Sample Midterm Conclusion

- 1. PAC learnable problem
	- a. PAC learnable \rightarrow ERM Algorithm, specify a loss function and describe it using math language
	- b. Describe the occasions of making mistakes, using math language; in other word, describe the misleading data that leads to *bad hypothesis class*, why and how. Union Bound infers that we need to find $(1 - \epsilon/2)^m \le \delta/2$, for we have 2 bounds to decide.
	- c. Let a margin be the distribution of $\mathbb{P}[\cdot] = \epsilon$, falling into that region means that single data point's error will be no more than ϵ ; then use something like $\mathbb{P}[no\;misled] = (1 - \epsilon)^m \leq e^{-\epsilon m} \leq \delta$ to get the bound of m by ϵ, δ .
- 2. VC Dimension Steps to prove VC Dimension:
	- Form a sample set C
	- Prove that C could be shattered by $\mathcal H$
	- Prove that adding another sample point then H could no longer shatter C'

In this problem we need to form the set C and prove that for all the possibilities of C it will have corresponding hypothesis in H . In this specific case where it is a hypothesis class of axis aligned rectangles in \mathbb{R}^d , I suggest forming a dataset C where points are in pairs, located on the axis, paired like $(-a, a)$. To illustrate shattering, we could specify a rectangle using a and d , denoting it by assigning the range to each of its dimension. For example, $h = rect((-2a, 2a), (-2a, 2a), ...)$ and to exclude 1 positive point from the set, $(-2a, 2a) \rightarrow (-a/2, 2a)$, to exclude 2 we do $(-a/2, a/2)$. So we could make any number from 0 to 2d using those combinations. But if there's an additional point added, it must have $\cos(e, x) \neq 0$ with one of the axis's base vectors. From slicing the triangle on a certain plane we know why it doesn't work.o

Basically, it tests your ability of formally describing the proof in n-d space.

- 3. Uniform Convergence
	- (a) Prove the uniform convergence accuracy, given a replacement of Hoeffding's inequality: the Bernstein's Inequality.

$$
\mathbb{P}\left[\left|\sum_{i=1}^{m}(\theta_{i}-\mu)\right|>\epsilon\right] \leq 2exp(-\frac{\epsilon^{2}/2}{\sum_{i=1}^{m}\mathbb{E}[X_{i}^{2}]+M\epsilon/3})\tag{1}
$$

where for i.i.d. $\theta_1 \dots \theta_m$, $\mathbb{E}[\theta_i] = \mu$ and $|\theta_i| \leq M$. To prove it:

- Set the value of the right hand side of the inequation (1) to be δ .
- $a\log(b) = \log(a^b)$, $-\log(\delta/2) = \log(2/\delta)$
- For $ax^2 + bx + c = 0$, $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$, then we get ϵ .
- For $ax + bx + c = 0$, $x = \frac{2a}{a}$, since we get c .
• Triangular Inequality, $\sqrt{a^2 b^2} \le a + b$, holds that probability is always $1 - \delta$ and that the $\mathbb P$ part could be omitted, so it is proved.
- (b) Prove the upper bound of empirical risk. (w.p. 1δ)
- We have that: $\theta_i = \mathbb{1}(h(x_i) = y), |\theta_i| \leq 1 = M, \mathbb{E}[x_i^2] = \mathbb{E}[x_i] = L_{\mathcal{D}}(h);$ $\frac{1}{m} \sum_i \theta_i = L_S(h).$
- According to part (a), $\mathbb{P}[|L_S(h) L_{\mathcal{D}}(h)| \geq \epsilon'] \leq \delta'$, where coming from the right hand side of (a) conclusion, $\epsilon' = \frac{2M \log(2/\delta)}{3m} + \sqrt{\frac{2 \mathbb{E}[\theta_1^2] \log(2/\delta)}{m}} =$ $\frac{2\log(2/\delta)}{3m}+\sqrt{\frac{2L_{\mathcal{D}}(h)\log(2/\delta)}{m}}$
- With Prob $\geq \frac{\delta'}{2}$ $\frac{\partial^2}{\partial z^2}$, we get the lower bound of $|L_S(h) - L_{\mathcal{D}}(h)|$ and conclude that $\sum_{h \in \mathcal{H}} \mathcal{D}^{\bar{m}}(\{\cdot\}) \leq \delta$, applying **union bound** we'll get the result. $\left(\frac{2\log(2/\delta)}{3m}+\sqrt{\frac{2L_{\mathcal{D}}(h)\log(2/\delta)}{m}}\right)$ is the upper bound of $|L_S(h)-L_{\mathcal{D}}(h)|$. It holds uniformly on H w.p. at least $1 - |\mathcal{H}| \frac{\delta}{2}$ $\frac{\delta'}{2}$, set $\delta = |\mathcal{H}| \frac{\delta'}{2}$ $\frac{\delta'}{2}$. Bridge $L_{\mathcal{D}}(\hat{h}_S) \rightarrow L_S(\hat{h}_S) \rightarrow L_S(h^*) \rightarrow L_{\mathcal{D}}(h^*),$ 2 times diff, thus proved; $C_1 = \frac{5\sqrt{2}}{2}, C_2 = \frac{13+2\sqrt{6}}{3}$ to be specific.)
- (c) Use (b), and make $L_{\mathcal{D}}(\widehat{h}_S) L_{\mathcal{D}}(h^*) \leq \epsilon$

4. Validation and model selection

Clarification: $h^* \in \operatorname{argmin}_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$ is contained in \mathcal{H}_j , while at the same time it could belong to multiple classes.

- a. ERM rule on \mathcal{H}_i , $VCdim(\mathcal{H}_i) = d_i$, according to the **VC bound** (mentioned in MDL), $\epsilon' = \sqrt{C \frac{d_j + \log(2/\delta)}{(1-\alpha)m}}$ and $L_D(\hat{h_j}) \leq L_S(\hat{h_j}) + \epsilon' \leq L_S(\hat{h^*}) + \epsilon' \leq$ $L_D(h^*) + 2\epsilon'$. (2/ δ : because $1 - \delta/2$)
- b. Note that \hat{h} is $ERMof{\{\widehat{h_1} \dots \widehat{h_k}\}}$ $|h_V h_D|$ (denoted as $L_D(\widehat{h})$ and $L_D(\widehat{h_j})$ in this question) upper bound, given $\delta/2$, and that $|\mathcal{H}| = k$, result in $\sqrt{\frac{\log(4k/\delta)}{2\alpha m}}$ $2\alpha m$ (twice to be the answer of (b)). Similar with (a) but use $L_D(\hat{h}) \to L_V(\hat{h}) \to$ $L_V(\hat{h}_i) \to L_D(\hat{h}_i)$. (According to the fundamental theorem of learning, agnostic PAC / UC sample complexity $\in [C_1 \frac{d + \log(1/\delta)}{\epsilon^2}]$ $\frac{\log(1/\delta)}{\epsilon^2}$, $C_2 \frac{d + \log(1/\delta)}{\epsilon^2}$ $\frac{P_g(1/\sigma)}{\epsilon^2}$, PAC sample complexity $\in [C_1 \frac{d + \log(1/\delta)}{\epsilon}]$ $\frac{g(1/\delta)}{\epsilon}$, $C_2 \frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon}$ $\frac{\left(\frac{1}{\epsilon}\right)}{\epsilon}$.)
- c. Known $L_D(\hat{h}_j) L_D(h^*)$ and $L_D(\hat{h}) L_D(\hat{h}_j)$, using union bound, $a + b = c$.
- 5. Nonuniform learnability
	- a. Assign weight to δ_i , $\forall h \in \mathcal{H}, \epsilon, \delta$, let $m \geq m_{\mathcal{H}_n(h)}^{UC}(\epsilon, w(n(h))\delta)$, since w add up to 1, w.p. $\geq 1-\delta$ over $S \sim \mathcal{D}^m$, $\forall h' \in \mathcal{H}$, $L_D(h') \leq L_S(h') +$ $\epsilon_{n(h')}(m, w(n(h'))\delta)$. (Holds particular for SRM, A(S).) By definition of SRM $L_D(A(S)) \leq \min_{h'} [L_S(h') + \epsilon_n(h')(m, w(n(h'))\delta)] \leq$ $L_S(h) + \epsilon_n(h)(m, w(n(h))\delta)$. If $m \geq m_{\mathcal{H}_n(h)}(\epsilon/2, w(n(h))\delta)$, then clearly $\epsilon_n(h)(m, w(n(h))\delta) \leq \epsilon/2$. Each \mathcal{H}_n is UC so w.p. $\geq 1-\delta$, $L_S(h) \leq L_D(h)+\frac{\epsilon}{2}$, proved by using $L_D(\hat{h}) \to L_V(\hat{h}) \to L_V(\hat{h}_i) \to L_D(\hat{h}_i)$.
	- b. The cost of weaker prior knowledge. Make $VCdim(\mathcal{H}_n) = n$ and then apply w to δ . The version in textbook uses that $m_{\mathcal{H}}^{NUL}(\epsilon, \delta, h)$ is bounded by $m_{\mathcal{H}_n}^{UC}(\frac{\epsilon}{2}, w(n)\delta)$, and conclude that $m_{\mathcal{H}}^{NUL}(\epsilon, \delta, h) - m_{\mathcal{H}_n}^{UC}(\frac{\epsilon}{2}, w(n)\delta) \leq$ $4C\frac{2\log(2n)}{\epsilon^2}$ $\frac{g(2n)}{\epsilon^2}$, where $m_{\mathcal{H}_n}^{UC}(\epsilon,\delta) = C \frac{n + \log(1/\delta)}{\epsilon^2}$ $\frac{\log(1/\sigma)}{\epsilon^2}$.