Machine Learning Algorithms (CS260) Cheat Sheet

Notations —		
Term	Notation	
Scalars	a, b, c, \ldots	
Vectors	$\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \dots$	
Matrices	$\mathbf{A}, \mathbf{X}, \mathbf{W}, \dots$	
Inner Product		
* tr(A)	trace of matrix A, $tr(A) = \sum_{i=1}^{n} a_{ii}$	
norm	$\ \cdot\ , \ \mathbf{x}\ _2 = \sqrt{\sum_i x_i^2}$	
$[a]_{+}$	max(a,0)	
Set	\mathcal{H}	
Domain Set / Input Space	An arbitrary set \mathcal{X} , usually vector of features, $\mathcal{X} \subseteq \mathbb{R}^d$.	
Instance	$x \in \mathcal{X}$	
Label Set / Target Space	\mathcal{Y} , usually $\{0,1\}$ or $\{-1,+1\}$	
Target / La- bel	$y\in\mathcal{Y}$	
Instance- Label Pair	$(x,y)\in\mathcal{X} imes\mathcal{Y}$	
Training data	$S = ((x_1, y_1), \dots (x_m, y_m)) \in (\mathcal{X} \times \mathcal{Y})^n,$ a finite sequence of pairs in $\mathcal{X} \times \mathcal{Y}$	
Hypothesis	$h: \mathcal{X} \to \mathcal{Y}$ (prediction rule / learner's output / classifier / function / predictor)	
Data Genera-	$f: \mathcal{X} \to \mathcal{Y}, y_i = f(x_i)$	
tion Model		
Probability	\mathcal{D} , over \mathcal{X} , learner don't know	
Distribution		
Probability	$\mathbb{P}(\cdot)$	
Expectation	$\mathbb{E}[\cdot]$	
Indicator	$\mathbb{1}(\epsilon) = 1$ if ϵ is true, otherwise = 0	
Function		
Learning Goal	Find a hypothesis h from \mathcal{H} with (mos-	
0.001	tly) correct predictions on future un -	
	seen examples	
Correct Clas- sifier	f	
Accuracy	ε	
Confidence	δ	
Sample size	Sample complexity: $m_{\mathcal{H}}$, lower bound of learnability	
inf	Infimum, \approx lower bound	
	Supremum, \approx upper bound	
sup	Supremum, \approx upper bound	

Learnability Theorems Overview

For binary classification, where $\mathcal{Y} = \{-1, +1\}$, error of h with respect to f is (PAC):

$$L_{\mathcal{D},f}(h) = \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq f(x)]$$
$$= \mathcal{D}(\{x \in \mathcal{X} : h(x) \neq f(x)\}$$

That of agnostic PAC:

$$L_{\mathcal{D},f}(h) = \mathbb{P}_{(x,y)\sim\mathcal{D}}[h(x)\neq y]$$

= $\mathcal{D}(\{(x,y)\in\mathcal{X}\times\mathcal{Y}:h(x)\neq y\})$

Important background knowledge include:

- 1. **i.i.d.** Independently Identically Distributed, Each x_i is sampled independently according to \mathcal{D} .
- 2. Empirical Risk $L_S(h) = \frac{|i \in [m]:h(x_i) \neq y_i|}{m}$ (m is the training set size), finding a predictor h that minimizes ER is called ERM (Empirical Risk Minimization).

Theorem	assumption	statement (of prob
		$\geq (1-\delta)$)
PAC Learna-	$\mathcal{D} \sim \mathcal{X}; \mathcal{H};$	$L_{\mathcal{D},f}(A(S)) \le \epsilon)$
ble	Realizability;	
	$m \geq m(\epsilon, \delta);$	
	ERM	
Agnostic PAC	$\mathcal{D} \sim \mathcal{X} \times \mathcal{Y};$	$L_{\mathcal{D}}(A(S)) \leq$
Learnable	the rest the	$\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$
	same	
Uniform Con-	S is ϵ -	$L_{\mathcal{D}}(A(S)) \leq$
vergence	representa-	$\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$
	tive; $m \geq$	
	$m_{\mathcal{H}}^{UC}(\epsilon,\delta)$ the	
	rest the same	
Nonuniform	Major change	$L_{\mathcal{D}}(A(S)) \leq$
Learnability	is in expres-	$\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$
	sion of prior	
	knowledge;	
	$m_{\mathcal{H}}^{NUL}(\epsilon,\delta,h)$	

Formula

- 1. $(1-\epsilon)^m \approx e^{-\epsilon m}, (1-x) \le e^{-x}$
- 2. (Union Bound) $\mathcal{D}(A \cup B) \leq \mathcal{D}(A) + \mathcal{D}(B)$
- 3. PAC & agnostic PAC: $m_{\mathcal{H}}(\epsilon, \delta) = \frac{1}{\epsilon} log(\frac{|\mathcal{H}|}{\delta})$
- 4. \forall finite \mathcal{H} is agnostically PAC learnable with: $m_{\mathcal{H}}(\epsilon, \delta) \leq \left\lceil \frac{2}{\epsilon^2} log(\frac{2|\mathcal{H}|}{\delta}) \right\rceil$
- 5. $m_{\mathcal{H}}(\epsilon, \delta) \leq m_{\mathcal{H}}^{UC}(\epsilon/2, \delta)$; every \mathcal{H} with uniform convergence property is agnostic PAC learnable.

6. $m_{\mathcal{H}}^{UC}(\epsilon, \delta) \leq \left\lceil \frac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2} \right\rceil$

- 7. $m_{\mathcal{H}}^{NUL}(\epsilon, \delta, h) \leq \frac{-\log(w(h)) + \log(2/\delta)}{2\epsilon^2}$ where \mathcal{H} is the class of all computable functions, not PAC learnable but NU learnable, MDL.
- 8. In SRM settings, $m_{\mathcal{H}}^{NUL}(\epsilon, \delta, h)$ is upperbounded by $\min_{n:h\in\mathcal{H}_n} C^{\frac{d_n - \log(w(h)) + \log(1/\delta)}{\epsilon^2}}$.
- 9. Validation set V and $\ell \in [0,1], |L_V(h) L_{\mathcal{D}}(h)| \leq \sqrt{\frac{\log(2/\delta)}{2m_v}}, 2|\mathcal{H}| \text{ if optimized } \hat{h}.$
- 10. For a finite class \mathcal{H} , $VCdim(\mathcal{H}) \leq \log_2(|\mathcal{H}|)$

11. $\sqrt{a^2 - b^2} \le \sqrt{(a+b)^2} = a + b$

Realizability Assumption

There exists $h^* \in \mathcal{H}$ such that $L_{(\mathcal{D},f)}(h^*) = 0$. It implies that, with probability of 1 over random sample $S, L_S(h^*) = 0$.

No Free Lunch Theorem

Fix $\delta \in (0, 1)$, $\epsilon \in (0, 1/2)$. \forall learner A and training set size m, $\exists \mathcal{D}, f$ such that:

$$\mathbb{P}(L_{\mathcal{D},f}(A(S)) \ge \epsilon) \ge \delta$$

not better than a random guess at 1/2

ϵ - representative sample

A training set S is ϵ - representative when it holds that:

 $\forall h \in \mathcal{H}, \ |L_S(h) - L_\mathcal{D}(h)| \le \epsilon$

Hints on Proofs

- 1. PAC: Consider the bad hypothesis class \mathcal{H}_B and misleading samples M.
- 2. Uniform Convergence:

 $\begin{aligned} \forall h \in \mathcal{H}, \\ L_{\mathcal{D}}(h_S) &\leq L_S(h_S) + \epsilon^* \\ &\leq L_S(h) + \epsilon^* \\ &\leq L_{\mathcal{D}}(h) + \epsilon^* + \epsilon^* \end{aligned}$

- 3. Finite class sample complexity upper bound: same with prove that $m_{\mathcal{H}}^{UC}(\epsilon, \delta) \leq \lceil \frac{\log(2|\mathcal{H}|/\delta)}{2\epsilon^2} \rceil$, and then use the Hoeffding's inequality to bound $\mathcal{D}^m(\dots > \epsilon) \leq 2exp(-2m\epsilon^2)$; Union bound and that's it.
- 4. Proof of $|L_V(h) L_D(h)|$: use Hoeffding's Inequality.
- 5. Kraft's Inequality: consider generating an expression as flipping coins or other random process, then $\mathbb{P}(\sigma) = \frac{1}{2|\sigma|}$
- 6. Minimum Description Length (MDL) bound proof: Make $\delta_h = w(h) \cdot \delta$ for each h; Apply Hoeffding to show that for each h, $\mathcal{D}^m(\{S : L_{\mathcal{D}}(h) > L_S(h) + \sqrt{\frac{\log(2/\delta_h)}{2m}}\}) \leq \delta_h$; apply union bound to get altogether they are $\sum \delta_h \leq \delta$.

Hoeffding's Inequality

Let $\theta_1, \ldots, \theta_m$ be a sequence of i.i.d. random variables that satisfies:

1. $\forall i, \mathbb{E}[\theta_i] = \mu$

2.
$$\forall i, \mathbb{P}[a \leq \theta_i \leq b] = 1$$

Then $\forall \epsilon > 0$,

$$\mathbb{P}[|\frac{1}{m}\sum_{i=1}^{m}\theta_i - \mu| > \epsilon] \le 2\exp(-2m\epsilon^2/(b-a)^2)$$

where
$$exp(x) = e^x$$
.

Markov's Inequality $\mathbb{P}[Z \ge a] \le \frac{\mathbb{E}[Z]}{a}$

specifically, when $a \in (0,1)$ and $Z \sim [0,1]$, assume that $\mathbb{E}[Z] = \mu$, we have:

$$\mathbb{P}[Z > a] \ge \frac{\mu - a}{1 - a} \ge \mu - a$$

k-fold cross validation

- divide the training dataset into k folds, use one fold as validation set, the rest for training
- a method of selecting the best parameters before going testing
- use the average of all the selections of $i \in \{1, \dots k\}$'s error to be the estimated error of a parameter set

Error Decomposition

$$L_{\mathcal{D}}(h_S) = \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + (L_{\mathcal{D}}(h_S) - \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h))$$

- 1. The approximation error: $\epsilon_{app} = \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$
 - bring in by restriction of ${\mathcal H}$
 - $\bullet\,$ independent from S
 - decreases with complexity of \mathcal{H} (denoted by size or VCdim)
- 2. The estimation error: $\epsilon_{est} = L_{\mathcal{D}}(h_S) \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$
 - Result of L_S being only an estimation of L_D
 - Decreases with the size of S
 - Might increase with the complexity of \mathcal{H} .

VC Dimension

 \mathcal{H} Shatters C means that all possible value of a given set C could be explained by a hypothesis from class $\mathcal{H}, |\mathcal{H}_C| \leq 2^{|C|}$, where $|\mathcal{H}_C|$ is the restriction of \mathcal{H} to C.

 $VCdim(H) = sup\{|C|: \mathcal{H} \ shatters \ C\}$

Bias-Variance Decomposition for Regression – Given that $(\mathbf{x}, y) \sim \mathcal{D}$, regression loss-function $\ell(h, (\mathbf{x}, y)) = (h(\mathbf{x}) - y)^2$. The expected loss is:

$$L_{\mathcal{D}}(h) = \mathbb{E}_{\mathcal{D}}[\ell(h, (\mathbf{x}, y))]$$

= $\int \int (h(\mathbf{x}) - y)^2 p(\mathbf{x}, y) d\mathbf{x} dy$
= $\int (h(\mathbf{x}) - h^*(\mathbf{x}))^2 p(\mathbf{x}, y) d\mathbf{x}$
+ $\int \int (h^*(\mathbf{x}) - y)^2 p(\mathbf{x}, y) d\mathbf{x} dy$

The expectation

 \mathbb{E}_{S}

$$\begin{split} [L_{\mathcal{D}}(h)] &= \mathbb{E}_{S}[\mathbb{E}_{\mathcal{D}}[\ell(h,(\mathbf{x},y))]] \\ &= \mathbb{E}_{S}[\int (h_{S}(\mathbf{x}) - h^{*}(\mathbf{x}))^{2} p(\mathbf{x}) d\mathbf{x}] \\ &+ \int \int (h^{*}(\mathbf{x}) - y)^{2} p(\mathbf{x},y) d\mathbf{x} dy \end{split}$$

where $\int \int (h^*(\mathbf{x}) - y)^2 p(\mathbf{x}, y) d\mathbf{x} dy$ is the noise and:

$$\begin{split} \mathbb{E}_{S}[\int (h_{S}(\mathbf{x}) - h^{*}(\mathbf{x}))^{2} p(\mathbf{x}) d\mathbf{x}] \\ &= \int (\mathbb{E}_{S}[h_{S}] - h^{*}(\mathbf{x}))^{2} p(\mathbf{x}) d\mathbf{x} \\ &+ \int \mathbb{E}_{S}[(h_{S}(\mathbf{x}) - E_{S}[h_{S}(\mathbf{x})])^{2}] p(\mathbf{x}) d\mathbf{x} \end{split}$$

where the first part is $bias^2$ and the second part is the *variance*.

Growth Function

The growth function of $\tau_{\mathcal{H}}(m)$ is defined as:

$$\tau_{\mathcal{H}}(m) = \max_{C \subset \mathcal{X}, |C|=m} |\mathcal{H}_C|$$

 $au_{\mathcal{H}}(m)$ the number of different functions from a set \mathcal{C} of size m to 0, 1 that can be obtained by restricting \mathcal{H} to C.

If $VCdim(\mathcal{H}) = d$ then for any $m \leq d$ we have $\tau_{\mathcal{H}}(m) = 2^m$, \mathcal{H} induces all possible functions from C to 0,1.

- Sauer-Shelah-Perles-Vapnik-Chervonenkis Ler Given $VCdim(\mathcal{H}) \leq d \leq \infty$, then for all $C \subset \mathcal{X}$ s.t.

$$|\mathcal{H}_C| \le (\frac{em}{d})^d$$

Fundamental Theorem of Learning

|C| = m > d + 1, we have:

 \mathcal{H} is a class of binary classifiers with $VCdim(\mathcal{H}) = d$. Then there are absolute constants C_1 and V_2 such that the sample complexity of PAC learning \mathcal{H} is:

$$C_1 \frac{d + \log(1/\delta)}{\epsilon} \le m_{\mathcal{H}}(\epsilon, \delta) \le C_2 \frac{d \log(2/\epsilon) + \log(1/\delta)}{\epsilon}$$

And this sample complexity is achieved using ERM rule.

Prior Knowledge

Described as hypothesis class \mathcal{H} in PAC learning and uniform learning. However there are other ways of expressing it, such as bias to shorter expressions. Generally, bias could be denoted as a weight w(h) assigned to each hypothesis in a **countable** hypothesis class \mathcal{H} . The weight reflects prior knowledge on the importance of each h.

$$\sum_{h \in \mathcal{H}} w(h) \le 1$$

An example is the description length.

Description Length

- Description language is denoted by d(h)
- The term **prefix-free** means that $\forall h \neq h', d(h)$ is not a prefix of d(d'); could always be achieved by including "end-of-word" symbol.
- Let |h| be the length of d(h)
- Then, set $w(h) = 2^{-|h|}$
- $\sum_{h} w(h) \leq 1$ according to **Kraft's inequality**.

Kraft's Inequality

If $\mathcal{S} \subset \{0,1\}$ is a prefix-free set of strings, then:

$$\sum_{\sigma \in S} \frac{1}{2^{|\sigma|}} \le 1$$

Sauer-Shelah-Perles-Vapnik-Chervonenkis Lemma Minimum Description Length (MDL) bound

Let $w : \mathcal{H} \to \mathbb{R}$ be such that $\sum_{h \in \mathcal{H}} w(h) \leq 1$. Then with prob $\geq 1 - \delta$ over $S \sim \mathcal{D}^m$ we have:

$$\forall h \in \mathcal{H}, L_{\mathcal{D}}(h) \leq L_{S}(h) + \sqrt{\frac{-\log(\mathbf{w}(\mathbf{h})) + \log(2/\delta)}{2m}}$$

Compared with VC bound:

$$\forall h \in \mathcal{H}, L_{\mathcal{D}}(h) \leq L_{S}(h) + \sqrt{\frac{\mathbf{VCdim}(\mathcal{H}) + \log(2/\delta)}{2m}}$$

Minimizing VC bound: ERM rule; Minimizing MDL bound: MDL rule.

- Minimum Description Length (MDL) Guarantee
For every
$$h \in \mathcal{H}$$
, w.p. $\geq 1 - \delta$ over $S \sim \mathcal{D}^m$ we have:
 $L_{\mathcal{D}}(MDL(S)) \leq L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}}$
 $\leq L_{\mathcal{D}}(h) + 2\sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}}$

Note than VC dim could be infinite.

Condition of NU Learnable

A class $\mathcal{H} \subset \{0,1\}^{\mathcal{X}}$ is non-uniform learnable if and only if it is a countable union of PAC learnable hypothesis classes.

Structural Risk Minimization (SRM)

$$SRM(S) \in \underset{h \in \mathcal{H}}{\operatorname{argmin}} [L_S(h) + \underset{n:h \in \mathcal{H}_n}{\min} \sqrt{C \frac{d_n - \log(w(n)) + \log(1/\delta)}{m}}$$

where $w(n) = w(\mathcal{H}_n)$

The Cost of Weaker Prior Knowledge

Suppose: $\mathcal{H} = \bigcup_n \mathcal{H}_n$, where $VCdim(\mathcal{H}_n) = n$.

- If, for some $h^* \in \mathcal{H}_n$ has $L_{\mathcal{D}}(h^*) = 0$, we can apply ERM so the sample complexity is $C \frac{n + \log(1/\delta)}{\epsilon^2}$
- Without the prior knowledge, sample complexity will be $C \frac{n + \log(\pi^2 n^2/6) + \log(1/\delta)}{\epsilon^2}$

Condition of NU Learnable: Proof

Assume that $\mathcal H$ is non-uniform learnable with sample complexity $m_{\mathcal H}^{NUL}$

- For every $n \in \mathbb{N}$ let $\mathcal{H}_n = \{h \in \mathcal{H} : m_{\mathcal{H}}^{NUL}(\frac{1}{8}, \frac{1}{7}, h) \leq n\}$, then clearly $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$
- For every \mathcal{D} s.t. $\exists h \in \mathcal{H}_n$ with $L_{\mathcal{D}}(h) = 0$, we have that $\mathcal{D}^n(\{S : L_{\mathcal{D}}(S(S)) \leq \frac{1}{8}\}) \geq \frac{6}{7}$
- The fundamental theorem of statistical learning implies that each \mathcal{H}_n has finite VC dimension d_n , each of them is agnostic PAC learnable.
- Choose a proper weight so that $\sum_{n} w(n) \leq 1$ and apply it to $w(n) = w(\mathcal{H}_n)$. One example is $w(n) = \frac{6}{\pi^3 n^2}$ since sum up from 1 to ∞ it adds up to 1.

• Choose
$$\delta_n = \delta \cdot w(n)$$
 and $\epsilon_n = \sqrt{C \frac{d_n + \log(1/\delta_n)}{m}}$

- By the fundamental theorem, for every n, $\mathcal{D}^m(\{S: \exists h \in \mathcal{H}_n, L_{\mathcal{D}}(h) > L_S(h) + \epsilon_n\}) \leq \delta_n.$
- Apply union bound, $\mathcal{D}^m(\{S : \exists n, h \in \mathcal{H}_n, L_{\mathcal{D}}(h) > L_S(h) + \epsilon_n\}) \leq \sum_n \delta_n \leq \delta.$

SRM Guarantee Proof

By NUL, we have:

$$L_{\mathcal{D}}(SRM(S)) \le L_{S}(SRM(S)) + \min_{n:h \in \mathcal{H}_{n}} \sqrt{\frac{-\log(w(SRM(S))) + \log(2/\delta)}{2m}}$$

By the optimality of SRM, we have:

above right hand side

$$\leq L_S(h) + \min_{n:h \in \mathcal{H}_n} \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}}$$

Claim: For any infinite domain set \mathcal{X} , $\mathcal{H} = \{0, 1\}^{\mathcal{X}}$ is not a countable union of classes of finite VC-dimension, hence such \mathcal{H} are **not** non-uniformly learnable.

Sample Midterm Conclusion

- 1. PAC learnable problem
 - a. PAC learnable \rightarrow ERM Algorithm, specify a loss function and describe it using math language
 - b. Describe the occasions of making mistakes, using math language; in other word, describe the misleading data that leads to *bad hypothesis class*, why and how. Union Bound infers that we need to find $(1 \epsilon/2)^m \leq \delta/2$, for we have 2 bounds to decide.
 - c. Let a margin be the distribution of $\mathbb{P}[\cdot] = \epsilon$, falling into that region means that single data point's error will be no more than ϵ ; then use something like $\mathbb{P}[no \ misled] = (1 \epsilon)^m \leq e^{-\epsilon m} \leq \delta$ to get the bound of m by ϵ, δ .
- 2. VC Dimension Steps to prove VC Dimension:
 - Form a sample set C
 - Prove that C could be shattered by \mathcal{H}
 - Prove that adding another sample point then \mathcal{H} could no longer shatter C'

In this problem we need to form the set C and prove that for all the possibilities of C it will have corresponding hypothesis in \mathcal{H} . In this specific case where it is a hypothesis class of axis aligned rectangles in \mathbb{R}^d , I suggest forming a dataset Cwhere points are in pairs, located on the axis, paired like (-a, a). To illustrate shattering, we could specify a rectangle using a and d, denoting it by assigning the range to each of its dimension. For example, $h = rect((-2a, 2a), (-2a, 2a), \ldots)$ and to exclude 1 positive point from the set, $(-2a, 2a) \rightarrow (-a/2, 2a)$, to exclude 2 we do (-a/2, a/2). So we could make any number from 0 to 2d using those combinations. But if there's an additional point added, it must have $\cos \langle e, x \rangle \neq 0$ with one of the axis's base vectors. From slicing the triangle on a certain plane we know why it doesn't work.o

Basically, it tests your ability of formally describing the proof in n-d space.

- 3. Uniform Convergence
 - (a) Prove the uniform convergence accuracy, given a replacement of Hoeffding's inequality: the **Bernstein's Inequality**.

$$\mathbb{P}[|\sum_{i=1}^{m} (\theta_i - \mu)| > \epsilon] \le 2exp(-\frac{\epsilon^2/2}{\sum_{i=1}^{m} \mathbb{E}[X_i^2] + M\epsilon/3}) \tag{1}$$

where for i.i.d. $\theta_1 \dots \theta_m$, $\mathbb{E}[\theta_i] = \mu$ and $|\theta_i| \leq M$. To prove it:

- Set the value of the right hand side of the inequation (1) to be δ .
- $a \log(b) = \log(a^b), -\log(\delta/2) = \log(2/\delta)$
- For $ax^2 + bx + c = 0$, $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$, then we get ϵ .
- Triangular Inequality, $\sqrt{a^2 b^2} \leq a + b$, holds that probability is always 1δ and that the \mathbb{P} part could be omitted, so it is proved.
- (b) Prove the upper bound of empirical risk. (w.p. 1δ)

- We have that: $\theta_i = \mathbb{1}(h(x_i) = y), |\theta_i| \le 1 = M, \mathbb{E}[x_i^2] = \mathbb{E}[x_i] = L_{\mathcal{D}}(h);$ $\frac{1}{m} \sum_i \theta_i = L_S(h).$
- According to part (a), $\mathbb{P}[|L_S(h) L_D(h)| \ge \epsilon'] \le \delta'$, where coming from the right hand side of (a) conclusion, $\epsilon' = \frac{2M \log(2/\delta)}{3m} + \sqrt{\frac{2\mathbb{E}[\theta_1^2] \log(2/\delta)}{m}} = \frac{2\log(2/\delta)}{3m} + \sqrt{\frac{2L_D(h)\log(2/\delta)}{m}}$
- With Prob $\geq \frac{\delta'}{2}$, we get the lower bound of $|L_S(h) L_D(h)|$ and conclude that $\sum_{h \in \mathcal{H}} \mathcal{D}^m(\{\cdot\}) \leq \delta$, applying **union bound** we'll get the result. $(\frac{2\log(2/\delta)}{3m} + \sqrt{\frac{2L_D(h)\log(2/\delta)}{m}}$ is the upper bound of $|L_S(h) - L_D(h)|$. It holds uniformly on \mathcal{H} w.p. at least $1 - |\mathcal{H}|\frac{\delta'}{2}$, set $\delta = |\mathcal{H}|\frac{\delta'}{2}$. Bridge $L_D(\widehat{h_S}) \to L_S(\widehat{h_S}) \to L_S(h^*) \to L_D(h^*)$, 2 times diff, thus proved; $C_1 = \frac{5\sqrt{2}}{2}, C_2 = \frac{13+2\sqrt{6}}{3}$ to be specific.)
- (c) Use (b), and make $L_{\mathcal{D}}(\widehat{h_S}) L_{\mathcal{D}}(h^*) \leq \epsilon$

4. Validation and model selection

Clarification: $h^* \in \operatorname{argmin}_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$ is contained in \mathcal{H}_j , while at the same time it could belong to multiple classes.

- a. ERM rule on \mathcal{H}_j , $VCdim(\mathcal{H}_j) = d_j$, according to the **VC bound** (mentioned in MDL), $\epsilon' = \sqrt{C\frac{d_j + \log(2/\delta)}{(1-\alpha)m}}$ and $L_D(\widehat{h_j}) \leq L_S(\widehat{h_j}) + \epsilon' \leq L_S(\widehat{h^*}) + \epsilon' \leq L_D(h^*) + 2\epsilon'$. (2/ δ : because $1 \delta/2$)
- b. Note that $\widehat{his}ERMof\{\widehat{h_1}...\widehat{h_k}.\}|h_V h_D|$ (denoted as $L_D(\widehat{h})$ and $L_D(\widehat{h_j})$ in this question) upper bound, given $\delta/2$, and that $|\mathcal{H}| = k$, result in $\sqrt{\frac{\log(4k/\delta)}{2\alpha m}}$ (twice to be the answer of (b)). Similar with (a) but use $L_D(\widehat{h}) \to L_V(\widehat{h}) \to L_V(\widehat{h_j}) \to L_D(\widehat{h_j})$. (According to **the fundamental theorem of learning**, agnostic PAC / UC sample complexity $\in [C_1 \frac{d + \log(1/\delta)}{\epsilon^2}, C_2 \frac{d + \log(1/\delta)}{\epsilon^2}]$, PAC sample complexity $\in [C_1 \frac{d + \log(1/\delta)}{\epsilon}, C_2 \frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon}]$.)
- c. Known $L_D(\widehat{h_j}) L_D(h^*)$ and $L_D(\widehat{h}) L_D(\widehat{h_j})$, using union bound, a + b = c.
- 5. Nonuniform learnability
 - a. Assign weight to δ_i , $\forall h \in \mathcal{H}, \epsilon, \delta$, let $m \geq m_{\mathcal{H}_n(h)}^{UC}(\epsilon, w(n(h))\delta)$, since wadd up to 1, w.p. $\geq 1 - \delta$ over $S \sim \mathcal{D}^m$, $\forall h' \in \mathcal{H}$, $L_D(h') \leq L_S(h') + \epsilon_{n(h')}(m, w(n(h'))\delta)$. (Holds particular for SRM, A(S).) By definition of SRM $L_D(A(S)) \leq \min_{h'}[L_S(h') + \epsilon_n(h')(m, w(n(h'))\delta)] \leq L_S(h) + \epsilon_n(h)(m, w(n(h))\delta)$. If $m \geq m_{\mathcal{H}_n(h)}(\epsilon/2, w(n(h))\delta)$, then clearly $\epsilon_n(h)(m, w(n(h))\delta) \leq \epsilon/2$. Each \mathcal{H}_n is UC so w.p. $\geq 1 - \delta$, $L_S(h) \leq L_D(h) + \frac{\epsilon}{2}$, proved by using $L_D(\hat{h}) \to L_V(\hat{h}) \to L_V(\hat{h_j}) \to L_D(\hat{h_j})$.
 - b. The cost of weaker prior knowledge. Make $VCdim(\mathcal{H}_n) = n$ and then apply w to δ . The version in textbook uses that $m_{\mathcal{H}}^{NUL}(\epsilon, \delta, h)$ is bounded by $m_{\mathcal{H}_n}^{UC}(\frac{\epsilon}{2}, w(n)\delta)$, and conclude that $m_{\mathcal{H}}^{NUL}(\epsilon, \delta, h) - m_{\mathcal{H}_n}^{UC}(\frac{\epsilon}{2}, w(n)\delta) \leq 4C\frac{2\log(2n)}{\epsilon^2}$, where $m_{\mathcal{H}_n}^{UC}(\epsilon, \delta) = C\frac{n + \log(1/\delta)}{\epsilon^2}$.