Machine Learning Algorithms (CS260) Cheat Sheet

Term Notation

Scalars a,b,c,...

Vectors u,vV,wW,X,...

Matrices AX, W, .

Inner Product (w,x) = Z wiz; = wix; (W, X) =
tr(WTX)

“tr(A) trace of matrix A, tr(A) =D 7" ai

norm -0 xll2 = /30, 2

[a]+ mazx(a,0)

Set H

Domain Set /
Input Space

An arbitrary set X, usually vector of
features, X C R%.

Instance reX

Label Set / Y, usually {0,1} or {—1,+1}

Target Space

Target / La- yey

bel

Instance- (z,y) e X x Y

Label Pair

Training data S = ((z1,y1),--- (Tm,ym)) € (X xXIP)",

a finite sequence of pairs in X x )

Hypothesis

h: X — Y (prediction rule / learner’s
output / classifier / function / predic-
tor)

Data Genera-

[:X =Y,y = f(z:)

tion Model

Probability D, over X, learner don’t know
Distribution

Probability P(-)

Expectation E[]

Indicator 1(e) = 1 if € is true, otherwise = 0
Function

Learning Goal

Find a hypothesis h from H with (mos-
tly) correct predictions on future un-
seen examples

Correct Clas- f
sifier

Accuracy €
Confidence 0

Sample size

Sample complexity: my, lower bound
of learnability

By Patricia Xiao

For binary classification, where Y = {—1,+1}, error
of h with respect to f is (PAC):

Lp (h) =Pyp[h(z) # f(2)]
=D({z e X: h(z) # f(x)})
That of agnostic PAC:
=D({(z,y) € X x Y : h(z) # y})

Important background knowledge include:

LD_’f(h)

1. i.i.d. - Independently Identically Distributed,
Each z; is sampled independently according to
D.

2. Empirical Risk - Lg(h) = M (mis
the training set size), finding a predlctor h that
minimizes ER is called ERM (Empirical Risk

Learnability Theorems Overview

Minimization).
Theorem assumption statement (of prob
> (1-9))
PAC Learna- | D ~ X; H; | Lp,s(A(S)) <e)
ble Realizability;
m > m(e,0);
ERM
Agnostic PAC | D ~ X x Y; | Lp(A(S)) <
Learnable the rest the | minpey Lp(h) + €
same
Uniform Con- | S is € - | Lp(A(S)) <
vergence representa- minpey Lp(h) + €
tive; m >
YC (e, 8) the
rest the same
Nonuniform Major change | Lp(A(S)) <
Learnability is in expres- | minpey Lp(h) + €

sion of prior
knowledge;
ma"" (€, 6,h)

inf Infimum, = lower bound
sup Supremum, =~ upper bound
exp Exponential, exp(z) = e®

1. A—emme ™ (1—xz)<e @
2. (Union Bound) D(AU B) < D(A) +D(B)
3. PAC & agnostic PAC: my(e,0) = 1log(lm)

4. V finite H is agnostically PAC learnable with:
ma(e,6) < [Flog(*5)]

5. my(e,8) <m¥C(e/2,0); every H with uniform
convergence property is agnostic PAC learnable.

6. m%c(e,(S) < (109(22\:21|/5)]

7. mNUL(e,85,h) < where H is
the class of all computable functions, not PAC
learnable but NU learnable, MDL.

— log(w(h))+log(2/9)
pr

8. In SRM settings, myUL(e,8,h) is upper-
bounded by min,,.,ez,, C Le=ioswh)+los(1/6)

9. Validation set V and ¢ € [0,1], |Ly(h) —
p(h)] <4/ 10g(2/5 , 2|H| if optimized h.

10. For a finite class H, VCdim(H) < log,(|H|)

1. Va2 =02 < \/(a+b2=a+b

Realizability Assumption
There exists h* € H such that Lip 5 (h*) = 0. It im-
plies that, with probability of 1 over random sample
S, Lg(h*) =0.

\.

No Free Lunch Theorem

Fix 6 € (0,1), € € (0,1/2). V learner A and training
set size m, 3D, f such that:

P(Lp f(A(S)) > ¢) > §

not better than a random guess at 1/2

\
€ - representative sample

A training set S is € - representative when it holds

that:
Vh € H, |[Ls(h) — Lp(h)| <€

r




Hints on Proofs
1. PAC: Consider the bad hypothesis class H g and
misleading samples M.

2. Uniform Convergence:

Vh € H,
Lp(hs) < Ls(hs) + €*
< Lg(h) + €
< Lp(h)+€e +¢*

3. Finite class sample complexity upper bound:
same with prove that m% (e, §) < (WL
and then use the Hoeffding’s inequality to
bound D™ (--- > €) < 2exp(—2me?); Union
bound and that’s it.

4. Proof of |Ly (h) —
quality.

Lp(h)|: use Hoeffding’s Ine-

5. Kraft’s Inequality: consider generating an ex-
pression as flipping coins or other random pro-

cess, then P(o) = 2‘1“

6. Minimum Description Length (MDL) bound
proof: Make 6, = w(h) - § for each h; Apply
Hoeffding to show that for each h, D™({S :

Lp(h) > Lg(h) + 1/ 200y < 4,: apply
union bound to get altogether they are > dp, <

J.

\

Hoeffding’s Inequality

Let 64, ...0,, be a sequence of i.i.d. random variables
that satisfies:

1. V’i, E[el] = U

2. Vi, Pla<6;, <b]=1

Then Ve > 0,

]P’H% Zei — u| > €] < 2exp(—2me?/(b— a)?)

i=1

where exp(z) = e*.

Markov’s Inequality

E[Z
a

P[Z > a] <

specifically, when a € (0,1) and Z ~ [0,1], assume

that E[Z] = p, we have:
-
]P’[Z>a]>7>,u—a
1—a

\.

k-fold cross validation

e divide the training dataset into k folds, use one
fold as validation set, the rest for training

e a method of selecting the best parameters before
going testing

e use the average of all the selections of i €
{1,...k}’s error to be the estimated error of a
parameter set

\.

Error Decomposition

Lop(hs) = min Lp(h) + (Lp(hs) — min Lp(h))

1. The approximation error: €qp, = minpey Lp(h)

e bring in by restriction of H

e independent from S

e decreases with complexity of H (denoted
by size or VCdim)

2. The estimation error: €.y = Lp(hs) —

mingey Lp(h)
e Result of Lg being only an estimation of
Lp
e Decreases with the size of S

e Might increase with the complexity of H.

\.

VC Dimension

‘H Shatters C means that all possible value of a given
set C' could be explained by a hypothesis from class
H, [He| < 2I€1, where |H¢| is the restriction of H to
C.

VCdim(H

) = sup{|C| : H shatters C}

Bias-Variance Decomposition for Regression

Given that (x,y) ~ D, regression loss-function
E(h, (x,y)) = (h(x) —y)*.
The expected loss is:

Lp(h) = (x, y))]

p(x, y)dxdy

//

—/( (%) — h*(x))2p(x, y)dx

“f Joe
The expectation

= Es[Ep[l(h, (x,9))]]
= ES [/(h’S(X) —h* (X))Qp(x)dx]

o] Joreo-

where [ [(h*(x) — y)?

(%, y)dxdy
Es[Lp(h)]

p(x, y)dxdy

p(x, y)dxdy is the noise and:

Es| / (hs(x) — h*(x))*p(x)dx]
- / (Es[hs] — h*(x))?p(x)dx
+ / Es[(hs(x) — Eshs(x)])2]p(x)dx

where the first part is bias? and the second part is the
variance.

\. J

Growth Function N\

The growth function of 74 (m) is defined as:

= a H
muim) = max [Hol

T1(m) the number of different functions from a set C
of size m to 0, 1 that can be obtained by restricting
H to C.
If VCdim(H) = d then for any m < d we have
T (m) = 2™, H induces all possible functions from
C to 0,1.




Given VCdim(H) < d <,00, then for all C C X s.t.
|C| =m > d+ 1, we have:

emyy
d )

Fundamental Theorem of Learning
H is a class of binary classifiers with VCdim(H) = d.

Then there are absolute constants C; and V5 such that
the sample complexity of PAC learning H is:

1d—i—log(l/é) < (e, 8) < Czdlog(Q/e) + log(1/6)

€ €

[Hel < (

C

And this sample complexity is achieved using ERM
rule.

\ J

Prior Knowledge <

Described as hypothesis class H in PAC learning and
uniform learning. However there are other ways of
expressing it, such as bias to shorter expressions.
Generally, bias could be denoted as a weight w(h) as-
signed to each hypothesis in a countable hypothesis
class H. The weight reflects prior knowledge on the
importance of each h.

> wh) <1

heH

An example is the description length.

\. J

Description Length N\

e Description language is denoted by d(h)

e The term prefix-free means that Vh # b/, d(h)
is not a prefix of d(d’); could always be achieved
by including “end-of-word” symbol.

e Let |h| be the length of d(h)

Sauer-Shelah-Perles-Vapnik-Chervonenkis Lemma

\.

e Then, set w(h) = 2~1"

e >, w(h) <1 according to Kraft’s inequality.

Kraft’s Inequality

If S € {0,1} is a prefix-free set of strings, then:

1
Zﬁﬁl

ocesS

r

Minimum Description Length (MDL) bound

Let w : H — R be such that ), ,, w(h) < 1. Then
with prob > 1 — § over S ~ D™ we have:

“log(w(h)) + log(2/9)
2m

Vh e H,Lp(h) < Ls(h) + \/

Compared with VC bound:

(H) + log(2/9)

2m

Vh e H, Lp(h) < Ls(h) + \/VCd‘m

Minimizing VC bound: ERM rule; Minimizing MDL
bound: MDL rule.

J

Minimum Description Length (MDL) Guarantee
For every h € H, w.p. > 1—§ over S ~ D™ we have:

—log(w(h)) + log(2/0)

Lp(MDL(S)) < Lg(h) + \/

r

2m
—1 h log(2/6
< Lo(h) + 2R o/
2m
Note than VC dim could be infinite.
Condition of NU Learnable N

A class H C {0,1}?* is non-uniform learnable if and
only if it is a countable union of PAC learnable
hypothesis classes.

r

Structural Risk Minimization (SRM)

SRM(S) € argmin[Lg(h)

heH
\/Cdn — log(w(n)) + log(l/é)}

m

+ min
n:h€H,

where w(n) = w(H,)

r

The Cost of Weaker Prior Knowledge
Suppose: H = U, H,, where VCdim(H,,) = n.

o If, for some h* € H, has Lp(h*) = 0, we
can apply ERM so the sample complexity is
On+log(1/§)

€2

e Without the prior knowledge, sample comple-
2, 2
xity will be ¢ ntlog(n™n 6/26)“(’%(1/5)

\.

complexity my;

Condition of NU Learnable: Proof

Assume that H is non-uniform learnable with sample

NUL

e For every n € N let H, =

NUL/1 1
my (5 75

{h € H
h) < n}, then clearly H = UpenHn

e For every D s.t. 3h € H,, with Lp(h) = 0, we
have that D"({S : Lp(S(5)) < £}) >

e The fundamental theorem of statistical learning
implies that each H,, has finite VC dimension
d,, each of them is agnostic PAC learnable.

e Choose a proper weight so that »° w(n) <1
and apply it to w(n) = w(H,). One example is
w(n) = =& since sum up from 1 to oo it adds
up to 1.

e Choose 6,, =6 -w(n) and €, = C%ﬂ/én).

e By the fundamental theorem, for every n,
D™({S:3h € Hp, Lp(h) > Lg(h) + €,}) < .

e Apply union bound, D™({S In,h €
My, Lp(h) > Lg(h) +€,}) <>, 0, <.

SRM Guarantee Proof

By NUL, we have:

Lp(SRM(S)) < Ls(SRM(S))
\/ —log(w(SRM(S))) + log(2/6)

2m

+ min
n:heH,

By the optimality of SRM, we have:

above right hand side

\/ —log(w(h)) + log(2/4)

2m

< Lg(h i
- S< >+nI}ILl€1%n

Claim: For any infinite domain set X, H = {0, 1}*
is not a countable union of classes of finite VC-
dimension, hence such H are not non-uniformly le-
arnable.




Sample Midterm Conclusion

1. PAC learnable problem

a. PAC learnable — ERM Algorithm, specify a loss function and describe it
using math language

b. Describe the occasions of making mistakes, using math language; in other
word, describe the misleading data that leads to bad hypothesis class, why
and how. Union Bound infers that we need to find (1 —¢/2)™ < §/2, for we
have 2 bounds to decide.

c. Let a margin be the distribution of P[] = ¢, falling into that region means
that single data point’s error will be no more than €; then use something like
Plno misled] = (1 — €)™ < e~ "™ < § to get the bound of m by ¢, 4.

2. VC Dimension Steps to prove VC Dimension:

e Form a sample set C
e Prove that C could be shattered by H
e Prove that adding another sample point then H could no longer shatter C’

In this problem we need to form the set C' and prove that for all the possibilities
of C it will have corresponding hypothesis in H. In this specific case where it is
a hypothesis class of axis aligned rectangles in R¢, I suggest forming a dataset C
where points are in pairs, located on the axis, paired like (—a,a). To illustrate
shattering, we could specify a rectangle using a and d, denoting it by assigning the
range to each of its dimension. For example, h = rect((—2a,2a), (—2a,2a),...)
and to exclude 1 positive point from the set, (—2a,2a) — (—a/2,2a), to exclude
2 we do (—a/2,a/2). So we could make any number from 0 to 2d using those
combinations. But if there’s an additional point added, it must have cos (e, z) # 0
with one of the axis’s base vectors. From slicing the triangle on a certain plane we
know why it doesn’t work.o

Basically, it tests your ability of formally describing the proof in n-d space.

3. Uniform Convergence

(a) Prove the uniform convergence accuracy, given a replacement of Hoeffding’s
inequality: the Bernstein’s Inequality.

- €2/2
Pl Zzzl(el —p)|>e€ < 2€xp<_zzr;1 E[XZQ] T Me/3
where for i.i.d. 6y ...60,,, E[6;] = p and |6;] < M. To prove it:
Set the value of the right hand side of the inequation (1) to be 4.
alog(b) = log(a®), —log(d/2) = log(2/6)
For az? 4+ bz + ¢ = 0, oz = =bEvb —dac W, then we get e.

Triangular Inequality, va2 — b2 < a + b, holds that probability is always
1 — § and that the P part could be omitted, so it is proved.

) (1)

(b) Prove the upper bound of empirical risk. (w.p. 1 — )

e We have that: 0; = 1(h(z;) =
L5 0; =Lg(h).
e According to part (a), P[|Lg(h) — Lp(h)| > €'] < ¢’, where coming from

the right hand side of (a) conclusion, € = 2M1§§f2/5) + 4/ QE[Q%]:ZgQ/&) =

2log(2/5) 2Lp(h) log(2/6)
%m + = ’H’Lg

y), |0:| < 1= M, Elz}] = Ela] = Lp(h);

e With Prob > %/, we get the lower bound of |Lg(h) — Lp(h)| and conclude
that >, .4, D™({-}) < 4, applying union bound we’ll get the result.

(21057(3/5) + ) o 0sC/0) g the upper bound of |[Ls(h) — Lp(h)|. Tt
holds umformly on H w.p. at least 1 — |7—L| , set & = |H|%. Bridge
LD(hS) — Ls(hg) — Lg(h*) — Lp(h*), 2 times diff, thus proved;

Cy = %702 = % to be specific.)

(¢) Use (b), and make LD(EE) — Lp(h*) <e

4. Validation and model selection

Clarification: h* € argmin, <y, Lp(h) is contained in #;, while at the same time it
could belong to multiple classes.

a. ERM rule on #H;, VCdim(H;) = d;, according to the VC bound (mentio-
ned in MDL), ¢ = /C L2 and L (hy) < Ls(h;) + € < Lg(h*) +¢' <
Lp(h*) 4+ 2€¢'. (2/5: because 1 —4/2)

b. Note that ﬁisERMof{a. . h/\k} |hy —hp| (denoted as Lp(h) and LD(h ) in
this question) upper bound, given §/2, and that |H| = k, result in 4/ log(4k/9)

2am
(twice to be the answer of (b)). Similar with (a) but use Lp (ﬁ) — LV(E) —

Ly (h ) — LD(h ). (According to the fundamental theorem of learning,

agnostic PAC / UC sample complexity € [C} d+1°§2(1/5),6'2 d+10§(1/5)}, PAC

[Cl d+log(1/9) ’ Cy dlog(l/e)+log(1/5)}.)

sample complexity €

c. Known LD(hAj)—LD(h*) and Lp(h) — LD(h ), using union bound, a+b = c.

5. Nonuniform learnability

a. Assign weight to §;, Vh € H,¢,0, let m > m%f(h)(e,w(n(h))(S), since w
add up to 1, wp. > 1—6 over S ~ D™ V' € H, Lp(h') < Ls(W) +
n(hy(m,w(n(h’))d). (Holds particular for SRM, A(S).)

By definition of SRM Lp(A(S)) < ming [Ls(h') + e, (h')(m, w(n(h'))d)] <
Ls(h) + en(h)(m,w(n(h))0). If m > myy n)(e/2,w(n(h))s), then clearly
n(h)(m,w(n(h))d )<e/2 Bach #,, is UC so w.p. > 19, Ls(h) < Lp(h)+5,
proved by using LD(h) — LV(h) — LV(h ) — LD(h ).

b. The cost of weaker prior knowledge. Make VCdim(H,) = n and then
apply w to §. The version in textbook uses that myyUZ(e,é,h) is boun-
ded by m¥,%(§,w(n)d), and conclude that myV~ (e, 8, h) — %C( ,w(n)d) <

4O 2loe2n) 1052(2"), where m%c(e 0) = Cinﬂoi(l/é).



