
Machine Learning Algorithms (CS260) Cheat Sheet
By Patricia Xiao

Term Notation

Scalars a, b, c, . . .

Vectors u,v,w,x, . . .

Matrices A,X,W, . . .

Inner Product 〈w,x〉 =
∑

i wixi = wTx; 〈W,X〉 =
tr(WTX)

∗ tr(A) trace of matrix A, tr(A) =
∑n

i=1 aii
norm ‖ · ‖, ‖x‖2 =

√∑
i x

2
i

[a]+ max(a, 0)

Set H
Domain Set /
Input Space

An arbitrary set X , usually vector of
features, X ⊆ Rd.

Instance x ∈ X
Label Set /
Target Space

Y, usually {0, 1} or {−1,+1}

Target / La-
bel

y ∈ Y

Instance-
Label Pair

(x, y) ∈ X × Y

Training data S = ((x1, y1), . . . (xm, ym)) ∈ (X×Y)n,
a finite sequence of pairs in X × Y

Hypothesis h : X → Y (prediction rule / learner’s
output / classifier / function / predic-
tor)

Data Genera-
tion Model

f : X → Y, yi = f(xi)

Probability
Distribution

D, over X , learner don’t know

Probability P(·)
Expectation E[·]
Indicator
Function

1(ε) = 1 if ε is true, otherwise = 0

Learning Goal Find a hypothesis h from H with (mos-
tly) correct predictions on future un-
seen examples

Correct Clas-
sifier

f

Accuracy ε

Confidence δ

Sample size Sample complexity: mH, lower bound
of learnability

inf Infimum, ≈ lower bound

sup Supremum, ≈ upper bound

exp Exponential, exp(x) = ex

Notations

For binary classification, where Y = {−1,+1}, error
of h with respect to f is (PAC):

LD,f (h) = Px∼D[h(x) 6= f(x)]

= D({x ∈ X : h(x) 6= f(x)})

That of agnostic PAC:

LD,f (h) = P(x,y)∼D[h(x) 6= y]

= D({(x, y) ∈ X × Y : h(x) 6= y})

Important background knowledge include:

1. i.i.d. - Independently Identically Distributed,
Each xi is sampled independently according to
D.

2. Empirical Risk - LS(h) = |i∈[m]:h(xi) 6=yi|
m (m is

the training set size), finding a predictor h that
minimizes ER is called ERM (Empirical Risk
Minimization).

Theorem assumption statement (of prob
≥ (1− δ))

PAC Learna-
ble

D ∼ X ; H;
Realizability;
m ≥ m(ε, δ);
ERM

LD,f (A(S)) ≤ ε)

Agnostic PAC
Learnable

D ∼ X × Y;
the rest the
same

LD(A(S)) ≤
minh∈H LD(h) + ε

Uniform Con-
vergence

S is ε -
representa-
tive; m ≥
mUC
H (ε, δ) the

rest the same

LD(A(S)) ≤
minh∈H LD(h) + ε

Nonuniform
Learnability

Major change
is in expres-
sion of prior
knowledge;
mNUL
H (ε, δ, h)

LD(A(S)) ≤
minh∈H LD(h) + ε

Learnability Theorems Overview

1. (1− ε)m ≈ e−εm, (1− x) ≤ e−x

2. (Union Bound) D(A ∪B) ≤ D(A) +D(B)

3. PAC & agnostic PAC: mH(ε, δ) = 1
ε log( |H|δ )

4. ∀ finite H is agnostically PAC learnable with:

mH(ε, δ) ≤ d 2
ε2 log( 2|H|

δ )e

5. mH(ε, δ) ≤ mUC
H (ε/2, δ); every H with uniform

convergence property is agnostic PAC learnable.

6. mUC
H (ε, δ) ≤ d log(2|H|/δ)2ε2 e

7. mNUL
H (ε, δ, h) ≤ − log(w(h))+log(2/δ)

2ε2 where H is
the class of all computable functions, not PAC
learnable but NU learnable, MDL.

8. In SRM settings, mNUL
H (ε, δ, h) is upper-

bounded by minn:h∈Hn C
dn−log(w(h))+log(1/δ)

ε2 .

9. Validation set V and ` ∈ [0, 1], |LV (h) −
LD(h)| ≤

√
log(2/δ)
2mv

, 2|H| if optimized ĥ.

10. For a finite class H, V Cdim(H) ≤ log2(|H|)

11.
√
a2 − b2 ≤

√
(a+ b)2 = a+ b

Formula

There exists h∗ ∈ H such that L(D,f)(h
∗) = 0. It im-

plies that, with probability of 1 over random sample
S, LS(h∗) = 0.

Realizability Assumption

Fix δ ∈ (0, 1), ε ∈ (0, 1/2). ∀ learner A and training
set size m, ∃D, f such that:

P(LD,f (A(S)) ≥ ε) ≥ δ

not better than a random guess at 1/2

No Free Lunch Theorem

A training set S is ε - representative when it holds
that:

∀h ∈ H, |LS(h)− LD(h)| ≤ ε

ε - representative sample
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1. PAC: Consider the bad hypothesis class HB and
misleading samples M .

2. Uniform Convergence:

∀h ∈ H,
LD(hS) ≤ LS(hS) + ε∗

≤ LS(h) + ε∗

≤ LD(h) + ε∗ + ε∗

3. Finite class sample complexity upper bound:

same with prove that mUC
H (ε, δ) ≤ d log(2|H|/δ)2ε2 e,

and then use the Hoeffding’s inequality to
bound Dm(· · · > ε) ≤ 2exp(−2mε2); Union
bound and that’s it.

4. Proof of |LV (h) − LD(h)|: use Hoeffding’s Ine-
quality.

5. Kraft’s Inequality: consider generating an ex-
pression as flipping coins or other random pro-
cess, then P(σ) = 1

2|σ|

6. Minimum Description Length (MDL) bound
proof: Make δh = w(h) · δ for each h; Apply
Hoeffding to show that for each h, Dm({S :

LD(h) > LS(h) +
√

log(2/δh)
2m }) ≤ δh; apply

union bound to get altogether they are
∑
δh ≤

δ.

Hints on Proofs

Let θ1, . . . θm be a sequence of i.i.d. random variables
that satisfies:

1. ∀i, E[θi] = µ

2. ∀i, P[a ≤ θi ≤ b] = 1

Then ∀ε > 0,

P[| 1
m

m∑
i=1

θi − µ| > ε] ≤ 2 exp(−2mε2/(b− a)2)

where exp(x) = ex.

Hoeffding’s Inequality

P[Z ≥ a] ≤ E[Z]

a

specifically, when a ∈ (0, 1) and Z ∼ [0, 1], assume
that E[Z] = µ, we have:

P[Z > a] ≥ µ− a
1− a

≥ µ− a

Markov’s Inequality

• divide the training dataset into k folds, use one
fold as validation set, the rest for training

• a method of selecting the best parameters before
going testing

• use the average of all the selections of i ∈
{1, . . . k}’s error to be the estimated error of a
parameter set

k-fold cross validation

LD(hS) = min
h∈H

LD(h) + (LD(hS)−min
h∈H

LD(h))

1. The approximation error: εapp = minh∈H LD(h)

• bring in by restriction of H
• independent from S

• decreases with complexity of H (denoted
by size or VCdim)

2. The estimation error: εest = LD(hS) −
minh∈H LD(h)

• Result of LS being only an estimation of
LD

• Decreases with the size of S

• Might increase with the complexity of H.

Error Decomposition

H Shatters C means that all possible value of a given
set C could be explained by a hypothesis from class
H, |HC | ≤ 2|C|, where |HC | is the restriction of H to
C.

V Cdim(H) = sup{|C| : H shatters C}

VC Dimension

Given that (x, y) ∼ D, regression loss-function
`(h, (x, y)) = (h(x)− y)2.
The expected loss is:

LD(h) = ED[`(h, (x, y))]

=

∫ ∫
(h(x)− y)2p(x, y)dxdy

=

∫
(h(x)− h∗(x))2p(x, y)dx

+

∫ ∫
(h∗(x)− y)2p(x, y)dxdy

The expectation

ES [LD(h)] = ES [ED[`(h, (x, y))]]

= ES [

∫
(hS(x)− h∗(x))2p(x)dx]

+

∫ ∫
(h∗(x)− y)2p(x, y)dxdy

where
∫ ∫

(h∗(x)− y)2p(x, y)dxdy is the noise and:

ES [

∫
(hS(x)− h∗(x))2p(x)dx]

=

∫
(ES [hS ]− h∗(x))2p(x)dx

+

∫
ES [(hS(x)− ES [hS(x)])2]p(x)dx

where the first part is bias2 and the second part is the
variance.

Bias-Variance Decomposition for Regression

The growth function of τH(m) is defined as:

τH(m) = max
C⊂X ,|C|=m

|HC |

τH(m) the number of different functions from a set C
of size m to 0, 1 that can be obtained by restricting
H to C.
If V Cdim(H) = d then for any m ≤ d we have
τH(m) = 2m, H induces all possible functions from
C to 0,1.

Growth Function
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Given V Cdim(H) ≤ d ≤,∞, then for all C ⊂ X s.t.
|C| = m > d+ 1, we have:

|HC | ≤ (
em

d
)d

Sauer-Shelah-Perles-Vapnik-Chervonenkis Lemma

H is a class of binary classifiers with V Cdim(H) = d.
Then there are absolute constants C1 and V2 such that
the sample complexity of PAC learning H is:

C1
d+ log(1/δ)

ε
≤ mH(ε, δ) ≤ C2

d log(2/ε) + log(1/δ)

ε

And this sample complexity is achieved using ERM
rule.

Fundamental Theorem of Learning

Described as hypothesis class H in PAC learning and
uniform learning. However there are other ways of
expressing it, such as bias to shorter expressions.
Generally, bias could be denoted as a weight w(h) as-
signed to each hypothesis in a countable hypothesis
class H. The weight reflects prior knowledge on the
importance of each h.∑

h∈H

w(h) ≤ 1

An example is the description length.

Prior Knowledge

• Description language is denoted by d(h)

• The term prefix-free means that ∀h 6= h′, d(h)
is not a prefix of d(d′); could always be achieved
by including “end-of-word” symbol.

• Let |h| be the length of d(h)

• Then, set w(h) = 2−|h|

•
∑
h w(h) ≤ 1 according to Kraft’s inequality.

Description Length

If S ⊂ {0, 1} is a prefix-free set of strings, then:∑
σ∈S

1

2|σ|
≤ 1

Kraft’s Inequality

Let w : H → R be such that
∑
h∈H w(h) ≤ 1. Then

with prob ≥ 1− δ over S ∼ Dm we have:

∀h ∈ H, LD(h) ≤ LS(h) +

√
− log(w(h)) + log(2/δ)

2m

Compared with VC bound:

∀h ∈ H, LD(h) ≤ LS(h) +

√
VCdim(H) + log(2/δ)

2m

Minimizing VC bound: ERM rule; Minimizing MDL
bound: MDL rule.

Minimum Description Length (MDL) bound

For every h ∈ H, w.p. ≥ 1− δ over S ∼ Dm we have:

LD(MDL(S)) ≤ LS(h) +

√
− log(w(h)) + log(2/δ)

2m

≤ LD(h) + 2

√
− log(w(h)) + log(2/δ)

2m

Note than VC dim could be infinite.

Minimum Description Length (MDL) Guarantee

A class H ⊂ {0, 1}X is non-uniform learnable if and
only if it is a countable union of PAC learnable
hypothesis classes.

Condition of NU Learnable

SRM(S) ∈ argmin
h∈H

[LS(h)

+ min
n:h∈Hn

√
C
dn − log(w(n)) + log(1/δ)

m
]

where w(n) = w(Hn)

Structural Risk Minimization (SRM)

Suppose: H = ∪nHn, where V Cdim(Hn) = n.

• If, for some h∗ ∈ Hn has LD(h∗) = 0, we
can apply ERM so the sample complexity is

C n+log(1/δ)
ε2

• Without the prior knowledge, sample comple-

xity will be C n+log(π2n2/6)+log(1/δ)
ε2

The Cost of Weaker Prior Knowledge

Assume that H is non-uniform learnable with sample
complexity mNUL

H

• For every n ∈ N let Hn = {h ∈ H :
mNUL
H ( 1

8 ,
1
7 , h) ≤ n}, then clearly H = ∪n∈NHn

• For every D s.t. ∃h ∈ Hn with LD(h) = 0, we
have that Dn({S : LD(S(S)) ≤ 1

8}) ≥
6
7

• The fundamental theorem of statistical learning
implies that each Hn has finite VC dimension
dn, each of them is agnostic PAC learnable.

• Choose a proper weight so that
∑
n w(n) ≤ 1

and apply it to w(n) = w(Hn). One example is
w(n) = 6

π3n2 since sum up from 1 to ∞ it adds
up to 1.

• Choose δn = δ ·w(n) and εn =
√
C dn+log(1/δn)

m .

• By the fundamental theorem, for every n,
Dm({S : ∃h ∈ Hn, LD(h) > LS(h) + εn}) ≤ δn.

• Apply union bound, Dm({S : ∃n, h ∈
Hn, LD(h) > LS(h) + εn}) ≤

∑
n δn ≤ δ.

Condition of NU Learnable: Proof

By NUL, we have:

LD(SRM(S)) ≤ LS(SRM(S))

+ min
n:h∈Hn

√
− log(w(SRM(S))) + log(2/δ)

2m

By the optimality of SRM, we have:

above right hand side

≤ LS(h) + min
n:h∈Hn

√
− log(w(h)) + log(2/δ)

2m

Claim: For any infinite domain set X , H = {0, 1}X
is not a countable union of classes of finite VC-
dimension, hence such H are not non-uniformly le-
arnable.

SRM Guarantee Proof
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Sample Midterm Conclusion

1. PAC learnable problem

a. PAC learnable → ERM Algorithm, specify a loss function and describe it
using math language

b. Describe the occasions of making mistakes, using math language; in other
word, describe the misleading data that leads to bad hypothesis class, why
and how. Union Bound infers that we need to find (1− ε/2)m ≤ δ/2, for we
have 2 bounds to decide.

c. Let a margin be the distribution of P[·] = ε, falling into that region means
that single data point’s error will be no more than ε; then use something like
P[no misled] = (1− ε)m ≤ e−εm ≤ δ to get the bound of m by ε, δ.

2. VC Dimension Steps to prove VC Dimension:

• Form a sample set C

• Prove that C could be shattered by H
• Prove that adding another sample point then H could no longer shatter C ′

In this problem we need to form the set C and prove that for all the possibilities
of C it will have corresponding hypothesis in H. In this specific case where it is
a hypothesis class of axis aligned rectangles in Rd, I suggest forming a dataset C
where points are in pairs, located on the axis, paired like (−a, a). To illustrate
shattering, we could specify a rectangle using a and d, denoting it by assigning the
range to each of its dimension. For example, h = rect((−2a, 2a), (−2a, 2a), . . . )
and to exclude 1 positive point from the set, (−2a, 2a) → (−a/2, 2a), to exclude
2 we do (−a/2, a/2). So we could make any number from 0 to 2d using those
combinations. But if there’s an additional point added, it must have cos 〈e, x〉 6= 0
with one of the axis’s base vectors. From slicing the triangle on a certain plane we
know why it doesn’t work.o
Basically, it tests your ability of formally describing the proof in n-d space.

3. Uniform Convergence

(a) Prove the uniform convergence accuracy, given a replacement of Hoeffding’s
inequality: the Bernstein’s Inequality.

P[|
m∑
i=1

(θi − µ)| > ε] ≤ 2exp(− ε2/2∑m
i=1 E[X2

i ] +Mε/3
) (1)

where for i.i.d. θ1 . . . θm, E[θi] = µ and |θi| ≤M . To prove it:

• Set the value of the right hand side of the inequation (1) to be δ.

• a log(b) = log(ab), − log(δ/2) = log(2/δ)

• For ax2 + bx+ c = 0, x = −b±
√
b2−4ac
2a , then we get ε.

• Triangular Inequality,
√
a2 − b2 ≤ a+ b, holds that probability is always

1− δ and that the P part could be omitted, so it is proved.

(b) Prove the upper bound of empirical risk. (w.p. 1− δ)

• We have that: θi = 1(h(xi) = y), |θi| ≤ 1 = M , E[x2i ] = E[xi] = LD(h);
1
m

∑
i θi = LS(h).

• According to part (a), P[|LS(h)− LD(h)| ≥ ε′] ≤ δ′, where coming from

the right hand side of (a) conclusion, ε′ = 2M log(2/δ)
3m +

√
2E[θ21 ] log(2/δ)

m =

2 log(2/δ)
3m +

√
2LD(h) log(2/δ)

m

• With Prob ≥ δ′

2 , we get the lower bound of |LS(h)−LD(h)| and conclude
that

∑
h∈HDm({·}) ≤ δ, applying union bound we’ll get the result.

( 2 log(2/δ)
3m +

√
2LD(h) log(2/δ)

m is the upper bound of |LS(h) − LD(h)|. It

holds uniformly on H w.p. at least 1 − |H| δ
′

2 , set δ = |H| δ
′

2 . Bridge

LD(ĥS) → LS(ĥS) → LS(h∗) → LD(h∗), 2 times diff, thus proved;

C1 = 5
√
2

2 , C2 = 13+2
√
6

3 to be specific.)

(c) Use (b), and make LD(ĥS)− LD(h∗) ≤ ε

4. Validation and model selection
Clarification: h∗ ∈ argminh∈H LD(h) is contained in Hj , while at the same time it
could belong to multiple classes.

a. ERM rule on Hj , V Cdim(Hj) = dj , according to the VC bound (mentio-

ned in MDL), ε′ =
√
C
dj+log(2/δ)
(1−α)m and LD(ĥj) ≤ LS(ĥj) + ε′ ≤ LS(ĥ∗) + ε′ ≤

LD(h∗) + 2ε′. (2/δ: because 1− δ/2)

b. Note that ĥisERMof{ĥ1 . . . ĥk.} |hV −hD| (denoted as LD(ĥ) and LD(ĥj) in

this question) upper bound, given δ/2, and that |H| = k, result in
√

log(4k/δ)
2αm

(twice to be the answer of (b)). Similar with (a) but use LD(ĥ)→ LV (ĥ)→
LV (ĥj)→ LD(ĥj). (According to the fundamental theorem of learning,

agnostic PAC / UC sample complexity ∈ [C1
d+log(1/δ)

ε2 , C2
d+log(1/δ)

ε2 ], PAC

sample complexity ∈ [C1
d+log(1/δ)

ε , C2
d log(1/ε)+log(1/δ)

ε ].)

c. Known LD(ĥj)−LD(h∗) and LD(ĥ)−LD(ĥj), using union bound, a+ b = c.

5. Nonuniform learnability

a. Assign weight to δi, ∀h ∈ H, ε, δ, let m ≥ mUC
Hn(h)(ε, w(n(h))δ), since w

add up to 1, w.p. ≥ 1 − δ over S ∼ Dm, ∀h′ ∈ H, LD(h′) ≤ LS(h′) +
εn(h′)(m,w(n(h′))δ). (Holds particular for SRM, A(S).)
By definition of SRM LD(A(S)) ≤ minh′ [LS(h′) + εn(h′)(m,w(n(h′))δ)] ≤
LS(h) + εn(h)(m,w(n(h))δ). If m ≥ mHn(h)(ε/2, w(n(h))δ), then clearly
εn(h)(m,w(n(h))δ) ≤ ε/2. EachHn is UC so w.p. ≥ 1−δ, LS(h) ≤ LD(h)+ ε

2 ,

proved by using LD(ĥ)→ LV (ĥ)→ LV (ĥj)→ LD(ĥj).

b. The cost of weaker prior knowledge. Make V Cdim(Hn) = n and then
apply w to δ. The version in textbook uses that mNUL

H (ε, δ, h) is boun-
ded by mUC

Hn ( ε2 , w(n)δ), and conclude that mNUL
H (ε, δ, h)−mUC

Hn ( ε2 , w(n)δ) ≤
4C 2 log(2n)

ε2 , where mUC
Hn (ε, δ) = C n+log(1/δ)

ε2 .
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