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1 Introduction

The goal of this project is to check how sen-
sitive stochastic gradient and Newton meth-
ods are to the parameters, considering the
implementation of our Matlab code. [

We’ve learned that there are many vari-
ants of Newton methods for NN, proposed
for handling complex cases such as large
data or deep networks. Working on small
sets from project 4, we made a reasonable
decision of using the standard Newton to
verify robustness.

2 Experiment Settings

All settings and data sets are the same as
project 4, except that we add the regular-
ization term back in sgd.m with parameter
C = 0.01, kept the same with the original
code’s defaults, momentum of SGD is 0.9.
We run 500 epochs for SGD, 50 iterations
for Newton. The number 50 is chosen for:

e One iteration of Newton is typically
10 ~ 20 times slower than one epoch
of SGD. In terms of time-consumption
they are reasonably comparable.
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more details on this project. We are group #1. Special thanks to
Xin Jiang and Kewei (Vivian) Cheng for inter-group discussions
with us.

'https://github.com/cjlinl/simpleNN

e We observed that Newton method con-
verges fast, and the test accuracy is typ-
ically converging before 50 iterations.

The settings we’re going to test for the
standard Newton method are as listed in Ta-
ble [I] Percentage of data for subsampled
Hessian, in the code implementation, is con-
trolled by parameter SR; and lambda, the
detailed updating procedure is influenced by
drop, boost, p, ﬂ etc., when ) is not zero.

PARAM \ VALUES
SR 0.2,0.5 (0.1, 0.25)
lambda 0,1

Table 1: Settings to test with Newton

We have the Newton linear system:
Gd = -V f(0)

Comparing it to the Levenberg-Marquardt
method’s modification:

(G° + X)d = -V £(6)

and knowing that A is always updated by
multiplying something with the previous A,
by having A\ = 0, Levenberg-Marquardt
method is disabled.

2p is given as fixed constant instead of parameterized, in the
implementation.


https://github.com/cjlin1/simpleNN

SGD method on MNIST dataset
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Figure 1: Test Accuracy on MNIST, using
SGD optimizer, recorded every 10 epoch.

Newton method on MNIST dataset
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Figure 2: Test Accuracy on MNIST, using
Newton method, recorded each iteration.

As for the stochastic gradient method part,
everything remains the same as before ex-
cept that this time we test different learning
rates: 1074, 1073, 1072, 10~ L.

The random seed that was supposed to be
changed 10 times in project 4 was not fixed
to be 111, the same as default.

Datasets we use are the same as before,
the mini-sized 5000 training sets for MNIST
and CIFARI10, and the original test sets.

3 Results and Discussion

The time complexity is mostly influenced
by the dataset and the type of optimizer.

SGD on MNIST typically costs 12 ~ 15
s/epoch, on CIFARI10 usually around 20
s/epoch; Newton with 20% sample rate on
MNIST typically costs around 220 ~ 240
s/iteration, and on CIFARI10 typically 460 ~
500 s/iteration; Newton with 50% sample
rate around 30 minutes to an hour each iter-
ation, and suffers from the hazard of exceed-
ing the memory limit.

From the running time we conclude that
the Newton method is more sensitive to the
data size, and its time-efficiency might need
further improvement. Another issue is that
the Newton program takes so much compu-
tational resources, that sometimes it 1S not
affordable to the computer.

Having Hessian subsample-percentage be-
ing 50% crushes the memory of a 16GB-
RAM Desktop PC with 17 processor running
Windows 10. Further more, it is reported by
Xin Jiang that 8GB-RAM Desktop with lat-
est Ubuntu will be crushed by 20%-sample-
rate Newton. Desktop computer with Mac
OS i1s not available to us thus not tested. We
found the Newton method runs the fastest
with Mac Pro (Laptop), and it would hardly
crush the memory of a laptop computer with
Windows operating systems either.

This phenomenon indicates that a short-
coming of the Newton method is its high
memory-complexity when computing Hes-
sian. From our observation, laptop is better
than desktop in running it, mac is better than
windows, and the larger RAM the better.

But still, we want to shed light on the re-
lations between the subsample size and the
performance. Therefore, we add two addi-
tional options of sample rate (SR), namely
0.1 and 0.25, so that we could gain a better
understanding upon the influence this param-
eter. Although a notice from Prof. Lin came
lately that we could reduce the number of



SGD method on CIFAR10 dataset
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Figure 3: Test Accuracy on CIFARIO, us-
ing SGD optimizer, recorded every 10 epoch.
Green line is hidden behind the red one.

Newton method on CIFAR10 dataset
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Figure 4: Test Accuracy on CIFARIO, us-
ing Newton method, recorded each iteration.
Sample rate 50% hasn’t finished yet, thus
we only report the results so far.

categories to fit in the memory, at that stage
we’ve finished running most of the experi-
ments, and we’ve found a machine that is
capable of running the 50% CIFAR10 New-
ton. The problem we face is that we don’t
have enough time to finish running the ex-
periments on 50% subsample rate before the
report-submission deadline. We’ll include
the results in the presentation.

As is shown by comparing Figure [I|and [2]
or Figure [3| and [}, the Newton method with
no more than 30 iterations is able to achieve

similar test accuracy with SGD after running
500 epochs.

With SGD, the smaller the learning rate
1s, the more stable the curve appears, but
the slower the algorithm converges. When
the learning rate is too large, the loss will
be exploded and reflected as loss being
NaN and testing accuracy fluctuate around
that of a random guess. We conclude that
SGD is pretty sensitive to learning rate.
The highest accuracy of SGD in the end is
around 97.71% on MNIST and 55.94% on
CIFARI10, achieved by learning rate 1073,

With Newton methods, it shows in Fig-
ure 2] and @] that both sample rate and
Levenberg-Marquardt (LM) method affect
its performance. We’ve observed that intro-
ducing LM method makes the learning curve
increase faster and more stably, and achieve
higher test accuracy in the end. Larger sam-
ple rate leads to faster learning. Newton
methods generally suffer from severe fluctu-
ation at the beginning, and gradually reach
stable accuracy. Without LM method, larger
learning rate might end up in lower accuracy
in the end. The highest test accuracy at iter-
ation 50 is achieved only when Levenberg-
Marquardt method applied. That is, 97.94%
on MNIST dataset, with sample rate 20%,
and on CIFARI10 56.87%, achieved when
the sample rate is 25%.

From our observation, with LM method,
the sample rate has little influence on the
final test accuracy. This finding applies to
both datasets, thus we assume that with sam-
ple rate 50%, the final test accuracy with
LM will be around 57%. From the other
curves, the final accuracy without LM might
be about 50%.

Newton methods have better robustness
in general, when given adequate amount of
memory space, and allow enough time.



