Test Accuracy of Using PyTorch and Matlab

Implementation
CS 269: Optimization Methods for Deep Learning, Project 4

Zhiping Xiao (Patricia), Haoran Wang *

1 Introduction

The goal of this project is to make test ac-
curacy of using PyTorch and of our Matlab
code || be the same or similar, by strictly
restricting the settings.

As we’ve discussed in project 3, using dif-
ferent settings can cause difference in perfor-
mance, and thus comparison between Mat-
lab and Pytorch version is not guaranteed
to be fair. Modification is needed so as to
make the results comparable.

This experiment should shed light on why
checking the reproducibility of a paper is
always so difficult.

2 Experiment Settings

The running time of training the full MNIST
or CIFARI1O sets is too long, especially
when we evaluate 10 runs under different
seeds and check the mean accuracy, 500
epochs each. Therefore, we use the 5000-
size subsets provided, while the test set re-
mains unchanged. To guarantee the two
settings are comparable, we chose to load
data in PyTorch from .mat file. In order

*Contact us at {patriciaxiao, hwan252}@ g.ucla.edu for
more details on this project.

'https://github.com/cjlinl/simpleNN

to achieve this we used the library function
loadmat from scipy, and defined our own
dataset direved from Dataset class of py-
torch. One thing to notify at this stage is
that data type matters a lot. We need to spec-
ify the data type as uint8, otherwise it’ll be
troublesome visualizing the inputs.

Min-max normalization is done by apply-
ing customized normalizer. Besides, for
cases divided by zero, we define the result
0. Note that min-max normalization is ap-
plied to each image separately, while the
zero-centering is applied to all channels to-
gether. We could do zero-centering right
after normalization.

As for the initialization, what we are re-
quired to use in PyTorch, proposed by Kaim-
ing He back in 2015, is already adopted into
the PyTorch library. [| For detailed refer-
ence see the discussion online, as well as the
documentation. This initialization is used
for the convolutional layers’ and the linear
layer’s weights initialization, while the cor-
responding bias terms are initialized as O.

The regularization term, controlled by the
parameter weight_decay in PyTorch, is by-
default zero, which means no regularization
if we do not specify it.

However, it is important to notice that the

21t is named kaiming_uniform_ under forch.nn.init.

https://github.com/cjlin1/simpleNN
https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.loadmat.html
https://discuss.pytorch.org/t/how-are-layer-weights-and-biases-initialized-by-default/13073/22
https://pytorch.org/docs/stable/nn.html

term param.decay in Matlab is totally differ-
ent with our weight_decay in PyTorch. It is
the learning rate decay (by default not con-
sidered), instead of the weight decay. There-
fore, we need to modify the Matlab code.

T L+1 e, 7Ll
L= 209 0+ = ZSZ CORTVAY

Zf (ZEH1(9): y;, Z1)
where £ in this case is simply the MSE loss.
We find in lossgrad_subset.m that, in the
current implementation the loss is calculated
as ||Z — Y||%, and that is the loss without
regularization. The regularization term is
introduced in sgd.m, line 18.

Running time is not our concern this time,
so we simply canceled the threads limitation
for faster speed. Number of threads should
not affect the accuracy.

Other parameters are exactly the same as
specified in the requirements. We consider
SGD + MSE only, learning rate on MNIST
dataset is 0.001 and learning rate on CI-
FARI10 is 0.003. Momentum o = 0.9 is
fixed. Mini-batch size 1s fixed to be 128, as
is specified in previous projects.

One thing that is pretty tricky here is that,
the CIFAR10 dataset used by PyTorch and
Matlab are dramatically different from each
other. Although they have the same labels
and the labels are in the same order by de-
fault, the content of the figures are different.
The Matlab CIFAR10 images are somehow
pre-processed into 3 x 3 blurred grids. There-
fore, if we use the Matlab training set, we
should use the Matlab test set to match it
up so as to avoid bugs, otherwise the model
will always perform terribly on test set.

after =

PACKAGE ACCURACY
Matlab always 0.9768 (avg: 0.9768)
PyTOI‘Ch 0.9788 0.9801 0.9795 0.9803

0.9827 0.9784 0.9785 0.9790

0.9792 0.9810 (avg: 0.9797)

Table 1: Final (500 epochs) Prediction Ac-

curacy on MINIST Test Set
PACKAGE ACCURACY

Matlab always 0.4490 (avg: 0.4490)
PyTOI'Ch 0.4302 0.4345 0.4275 0.4302
ep #100 0.4371 0.4226 0.4266 0.4248
0.4319 0.4173 (avg: 0.4283)

PyTOI'Ch 0.3824 0.3833 0.3762 0.3732
final 0.3870 0.3855 0.3885 0.3921

0.3872 0.3717 (avg: 0.3827)
Table 2: Final (500 epochs) Test Accuracy,
and Epoch #100 on CIFAR10

3 Results and Discussion

The test accuracy of 10 run with 500 epochs
each on MNIST are as shown in Table [I}
and the results on CIFAR10 are as shown
in Table 2l The Matlab result is pretty sta-
ble, besides, the loss of each epoch using
our Matlab code remains the same among
the 10 runs. Only PyTorch version involves
randomness.

In general, our result show that after re-
stricting the settings (as well as the dataset)
to be the same, Matlab and PyTorch package
have similar test accuracy.

However, it is obvious that the perfor-
mance on CIFARI10 is different. We have
our PyTorch model settings carefully syn-
chronized with the Matlab implementation,
but the difference is still there.

We suppose that it ends up in this situation
is mostly due to overfitting, yet partly due to

subtle settings such as that the loss functions
of the two packages could not be exactly the
same. Looking into the Matlab code we
found that the equivalent version of its loss
function (Frobenius Norm squared) should
be MSELoss with sum reduction (normal-
ized by dividing the batch size) instead of
with mean reduction. However, in practice,
PyTorch MSELoss with sum reduction is
not well-handled and it suffers exploding
gradients a lot, thus we gave in and also
logged the PyTorch test accuracy at around
epoch # 100, which is sufficient in proving
the ability and potential of PyTorch model.
There are many standard ways out yet none
of them is used since the settings are fixed.
As for the accuracy difference, we naturally
suspect that some differences are introduced
by the two different versions of loss.

MNIST safely avoided the issue since it is
simpler and thus subset size 5000 is likely
to be representative enough. We find that
the reason why our PyTorch MSELoss with
sum reduction fails is that the batch size is
too big. Matlab package avoided this issue
by dividing the batch size.

Xin Jiang and Kewei Cheng from another
group discussed over it with us, they found
that reducing the learning rate will avoid
the accuracy dropping. Xin suspects that
it 1s underfitting. But we believed that the
case could be: their learning rate was so
small that the model was underfitting. Fur-
ther experiment is needed for a concrete and
convincing explanation.

Using the mini dataset, on the other hand,
significantly saves our time. Recall that
last time we have MNIST running time ap-
proximately 200 seconds per epoch, and CI-
FAR10 running time approximately 250 sec-
onds; this time it is approximately 22 sec-
onds on MNIST and 25 seconds / epoch on

Test Accuracy on MNIST Dataset

g
=}
|

test accuracy
o o
(=)} ©

o
IS

©
N

—— Matlab
PyTorch

0.0+

T T T T T T
0 100 200 300 400 500
epoch #

Figure 1: Test Accuracy on MNIST, with
PyTorch plotted as error bar.

Test Accuracy on CIFAR Dataset

0.51

o I
w IS
L

test accuracy

o
N

0.14 —— Matlab
PyTorch

0 100 200 300 400 500
epoch #

Figure 2: Test Accuracy on CIFARIO, with
PyTorch plotted as error bar.

CIFARI10. Using PyTorch, the running time
per epoch is around 9 and 10 seconds with
single core respectively, comparing with last
time’s 100 s / epoch and 110 s / epoch, we
can say that simply switching to the mini-
sized dataset makes the model around 10
times faster, on Matlab or PyTorch.

The test accuracy plotted by epoch is as
shown in Figure [I] and Figure 2] respectively.
We used error plot to show the randomness
of PyTorch results. It is obvious that the gen-
eral trend is similar, while the performance
is different due to some subtle differences in
subtle details, dependencies or languages.

