
Efficiency of Matlab SG Implementation
CS 269: Optimization Methods for Deep Learning, Project 3

Zhiping Xiao (Patricia) ∗, Student ID 604775684

1 Introduction
The goal of this project is to conduct the
running-time analysis of the Matlab/Octave
SG implementation and how efficient it is in
comparison with PyTorch implementation.

2 Environment
Octave is an open-sourced free alternative
of Matlab, but would be much more trou-
blesome installing statistics toolkit, except
on Linux. In this case, since UCLA doesn’t
provide us free Matlab license, I used the
license from my previous institution 1. Py-
Torch implementation could simply go by
the code implemented in previous projects
from this course. As for Matlab/Octave:

1. Install Octave and Octave Statistics
toolkit, or simply install Matlab. In
my case I installed Matlab R2019a.

2. Clone/Download the Matlab code 2 and
data 3 provided by Prof. Lin. Put all

∗Contact me at patriciaxiao@g.ucla.edu for more details on
this project.

1https://www.mathworks.com/academia/
tah-portal/berkeley-731130.html

2https://github.com/cjlin1/simpleNN.
3https://www.csie.ntu.edu.tw/~cjlin/

courses/optdl2019/slides/proj_efficiency_
matlab/

given .config files under config folder,
all .mat files under data folder.

3. Figure out how to pass in options
and verify that the code works. e.g.
Opening them in Matlab IDE and type

“example_mnist("-s 2 -epoch_max 5")”
in the command window will make
it run SG solver instead of the New-
ton one in default settings, and run 5
epochs instead of the default 500.

4. We care more about the time efficiency
than the accuracy. As is stated in the
project spec, we need profile as a de-
tailed timer. 4 Matlab provides perfect
support in profile, allowing us to evalu-
ate the calls of almost every paragraph.
By the way, if we only need the starting
and ending time of the epochs we could
use the tic-toc built-in timer.

I run the experiments on mac OS 10.13.3,
processor 2.2 GHz Intel Core i7.

3 Settings and Data
The hyper-parameter settings are as shown
in Table 1. No momentum or decay. As for
loss function, only MSE (minimum square
error) loss is used. Maximum epochs of

4https://www.mathworks.com/help/matlab/
ref/profile.html

1

https://www.mathworks.com/academia/tah-portal/berkeley-731130.html
https://www.mathworks.com/academia/tah-portal/berkeley-731130.html
https://github.com/cjlin1/simpleNN
https://www.csie.ntu.edu.tw/~cjlin/courses/optdl2019/slides/proj_efficiency_matlab/
https://www.csie.ntu.edu.tw/~cjlin/courses/optdl2019/slides/proj_efficiency_matlab/
https://www.csie.ntu.edu.tw/~cjlin/courses/optdl2019/slides/proj_efficiency_matlab/
https://www.mathworks.com/help/matlab/ref/profile.html
https://www.mathworks.com/help/matlab/ref/profile.html

running is always fixed to be 5. Single-core
is also specified.

settings learning rate batch size
values 0.01 128

Table 1: Fixed Parameters

I have tried to compare the results from
Matlab to that of PyTorch, with or without
normalization. Normalization parameters
are the same as in previous projects.

We use both MNIST and CIFAR dataset.
As for the datasets, I’ve verified that the

datasets used by Matlab are exactly the
same with the ones we use in PyTorch. I
did so by printing all labels and compar-
ing them (range 0 to 9). It is not hard to
figure out that they have the same values
and are in the same order, for both training
sets and testing sets. For example, MNIST
training sets both goes 5, 0, 4, 1, 9, . . . , test-
ing 7, 2, 1, 0, 4, . . . ; CIFAR training set
6, 9, 9, 4, 1, . . . and testing 3, 8, 8, 0, 6,

4 Results and Discussion
Although testing accuracy is not our major
concern in this project, it always remains an
important measurement of the code perfor-
mance, thus I still list it out in Table 2.

dataset model norm accuracy
MNIST Matlab yes 0.9561

PyTorch yes 0.9222
PyTorch no 0.7648

CIFAR10 Matlab yes 0.4766
PyTorch yes 0.325
PyTorch no 0.267

Table 2: Testing Accuracy after 5 Epochs

What we care the most is the running time
of each model, listed in Table 3.

dataset model norm time (s)
MNIST Matlab yes 215.99

PyTorch yes 108.9851
PyTorch no 104.4568

CIFAR10 Matlab yes 293.5902
PyTorch yes 111.1747
PyTorch no 107.2799

Table 3: Average Running Time per Epoch

It is said that there remains an issue of the
above setting: PyTorch runs 2 threads and
uses 50% CPU on each, then considering
the impact of the automatically-paralleled
settings, we should say that the Matlab im-
plementation has approximately the same ef-
ficiency with PyTorch implementation. An-
other reason why Matlab version exceed
twice the running time of PyTorch might be
the overhead of handling some tricky issues.

Examining the detailed information from
Matlab profiling, we found that the summary
of MNIST and CIFAR10 result are similar
with similar portion of time-consumption on
each part, except that experiment on MNIST
takes more time (109.307s) on maxpooling
than on padding and phiZ (80.59s), while
CIFAR10 test takes more time (173.950s)
on padding and phiZ than on maxpooling
(141.979s). The top-3 most time-consuming
parts are lossgrad_subset, vTP calculation
and feedforward process. padding and phiZ
and maxpooling rank either 4 or 5 on the
two datasets. The above finding might infer
that latter on when we want to improve the
algorithm’s performance, we should focus
more on these aspects.

Another advantage of the Matlab imple-
mentation is that it really converges fast.
This tendency could be observed by sim-
ply viewing the final testing accuracy after
limited epochs.

2

