
Comparing Various Stochastic Gradient Methods by
PyTorch

CS 269: Optimization Methods for Deep Learning, Project 2

Zhiping Xiao (Patricia) ∗, Student ID 604775684

1 Introduction
The goal of this project is to check the use
of several different stochastic gradient im-
plementations in PyTorch for training CNN
models. This is an extension of project 1.

I am hereby testing the performance of
the PyTorch CNN implementation using dif-
ferent optimizer, whose settings are to be
specified in section 2.

2 Experiment Settings
This time, since we are required to use CPU
only, and that we have to run 50 epochs to
evaluate the performance, I chose to run it
on a desktop computer with OS Windows
10, 64bit, with 8th Generation Intel Core i7-
8700 6-Core Processor (12MB Cache, up to
4.6 GHz). Both with/without normalization
are tried 1, and both MNIST and CIFAR10
are used. The architecture of the CNN is
the same as project 1 2. For both datasets,
I’m testing 4 cases of optimizer respectively:

∗Contact me at patriciaxiao@g.ucla.edu for more details on
this project.

1CIFAR10 uses transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5)), MNIST uses transforms.Normalize((0.1307,),
(0.3081,)), for normalization.

2For the detailed hyper-parameters see https://www.
csie.ntu.edu.tw/~cjlin/courses/optdl2019/
slides/proj_simple_sg_pytorch.pdf

(1) standard SGD, (2) SGD with momentum
0.9, (3) Adagrad, (4) Adam.

Loss function is MSE loss by default.
Other requirements are as listed in Table 1.

settings learning rate batch size
values 0.01 128

Table 1: Fixed Parameters

We are required to examine the relation
between accuracy and the accumulated num-
ber of epochs.

3 Results and Discussion
Generally speaking, similar with project 1,
running on MNIST is faster than running on
CIFAR10, about 80 ∼ 85 and 90 ∼ 95 sec-
onds respectively, with normalization. With-
out normalization, the running time is typ-
ically 3 to 5 seconds faster per epoch (typ-
ically, around 80 and 90 seconds, respec-
tively). CIFAR10 running time reflects the
difference between optimizers. Whether to
choose MSE-loss or cross-entropy loss as
the loss function has little influence on the
time complexity. Momentum has little influ-
ence on time either. Adagrad and standard
SGD have similar time complexity, Adam is
slightly faster, about 1 ∼ 2 seconds faster
each epoch than the rest.

1

https://www.csie.ntu.edu.tw/~cjlin/courses/optdl2019/slides/proj_simple_sg_pytorch.pdf
https://www.csie.ntu.edu.tw/~cjlin/courses/optdl2019/slides/proj_simple_sg_pytorch.pdf
https://www.csie.ntu.edu.tw/~cjlin/courses/optdl2019/slides/proj_simple_sg_pytorch.pdf

In most of the other cases the model con-
verges as expected, except that once it isn’t
working with MSE-loss and Adam together,
but works well with cross-entropy loss. This
problem vanished when I re-run it. This
might infer to the existence of local optimal
points with MSE + Adam settings.

Since using MSE loss is required by this
project’s spec 3, I’m still comparing the
MSE-loss version among all different op-
timizers, using the reasonable results where
it is not trapped in local optimal.

As is shown in Figure 1, all optimizers
work well except some specific cases (spe-
cial case not plotted, email me for discus-
sion), which we’ve briefly discussed. And
no matter we add momentum, or we change
the optimizer to Adagrad, the performance
is generally better than using the standard
SGD method. Normalization is beneficial
for improving testing accuracy and accel-
erating convergence for standard SGD, but
probably not as useful for other optimizers.

With a more complex dataset CIFAR10, as
is shown in Figure 2, the difference among
optimizers is more significant. In general,
it seems that for the given settings speci-
fied before, Adagrad converges faster, but
standard SGD with momentum, normalized,
seems to have slightly-higher accuracy in the
end. Standard SGD benefits a lot from doing
normalization, but benefits even more from
adding momentum. Adam converges fast
but the accuracy fluctuates a lot, all other
optimizers have smoother curves. Seems
that doing normalization doesn’t help a lot
in improving Adagrad performance, at least
in our case, it converges even faster without
normalization, although it seems that in the

3https://www.csie.ntu.edu.tw/~cjlin/
courses/optdl2019/slides/proj_sg_
comparison_pytorch.pdf

end normalization might lead it to a higher
accuracy.

Randomness is observed after several
runs, especially with Adam and Adagrad.
Those advanced techniques have good per-
formance anyway, but sometimes one set-
ting could beat another unexpectedly by
chance. Randomness has larger influence
than normalization to them.

0 10 20 30 40 50
epoch

0.2

0.4

0.6

0.8

1.0

te
st

in
g

ac
cu

ra
cy

Performance on MNIST using MSE loss

standard SGD, normalized
SGD with momentum, normalized
Adagrad, normalized
Adam, normalized
standard SGD, without normalization
SGD with momentum, without normalization
Adagrad, without normalization
Adam, without normalization

Figure 1: The performance of different opti-
mizers on MNIST dataset.

0 10 20 30 40 50
epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

te
st

in
g

ac
cu

ra
cy

Performance on CIFAR10 using MSE loss

standard SGD, normalized
SGD with momentum, normalized
Adagrad, normalized
Adam, normalized
standard SGD, without normalization
SGD with momentum, without normalization
Adagrad, without normalization
Adam, without normalization

Figure 2: The performance of different opti-
mizers on CIFAR10 dataset.

2

https://www.csie.ntu.edu.tw/~cjlin/courses/optdl2019/slides/proj_sg_comparison_pytorch.pdf
https://www.csie.ntu.edu.tw/~cjlin/courses/optdl2019/slides/proj_sg_comparison_pytorch.pdf
https://www.csie.ntu.edu.tw/~cjlin/courses/optdl2019/slides/proj_sg_comparison_pytorch.pdf

