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Project 1: Running Stochastic Gradient by PyTorch
Zhiping Xiao (Patricia), Student ID 604775684

Abstract—This is the first project of UCLA CS 269: Opti-
mization Methods for Deep Learning, 2019 Spring quarter. The
requirements are listed on course website. Done individually by
Zhiping Xiao (Patricia). The project involves: (1) setting up
PyTorch environment; (2) build a simple CNN model; (3) run
it. It is experiment-oriented, and thus in the following parts I’m
going to discuss the details of the experiments.

Index Terms—PyTorch, Stochastic Gradient Descent, CNN

I. INTRODUCTION

AS the very first project of CS269, this project is done
individually, served as a warm-up project getting us

familiar with the use of PyTorch 1, a rising star among all
open-sourced deep learning platforms.

In this report I’m going to discuss:
• installation process of PyTorch;
• discussion on PyTorch usage and difficulties;
• results in terms of the running time and accuracy.
My code is not released to the public. In case that the code

is needed, please contact me at patriciaxiao@g.ucla.edu.

II. INSTALLATION

PyTorch installation is slightly more troublesome than
TensorFlow or Keras (who are maturer at the current stage), but
it is tolerable in general. Guidlines on installation are available
at https://pytorch.org/get-started/locally/.

My operating system Mac OS 10.13.3. It is said that in order
to install PyTorch with Python 3.6 or higher, we can’t use the
default installation. Anaconda or Homebrew should help.

Since Python2 which I am currently using will be deprecated
within a few years, I installed Anaconda 2, who perfectly helped
me handle Python version, and by default I am using Python
3.7.1 right now.

There’s no specific difficulty in installation.

III. PYTORCH

Generally speaking, PyTorch is pretty understandable. I
found the following links useful:

• official documentation on torch.nn at https://pytorch.
org/docs/stable/nn.html, with the detailed definitions of
activation functions, convolution layers, and pooling layers,
etc;

• an example of CNN provided by official documenta-
tion at https://pytorch.org/tutorials/beginner/blitz/cifar10_
tutorial.html;

• the optimization options documentation is available at
https://pytorch.org/docs/stable/optim.html;

1https://pytorch.org/
2https://www.anaconda.com/distribution/#macos

• in particular, the detailed description of SGD is here
at https://pytorch.org/docs/stable/_modules/torch/optim/
sgd.html;

• introduction of padding from official documenta-
tion at https://pytorch.org/docs/stable/_modules/torch/nn/
modules/padding.html.

There isn’t any real difficulty in using the package. However,
from my perspective, the documentation is less maturer than
that of TensorFlow or Keras. We can easily figure out one way
of implementation, but it is hard to figure out other equivalent
ways without hints from other developers. For instance, it
is easy to figure out that we can write convolutional layers,
pooling layers, padding, etc. separately, but I didn’t see obvious
hint popping out nn.Sequential, which contributed a lot to my
code’s readability. 3

Plus, just like any other deep learning package, the sugges-
tions on online forums and blogs, such as stackoverflow, are
not guaranteed to be reliable. Everything need to be tested.
But the workload doesn’t exceed half a day in total.

I think there could be one improvement: providing default-
settings on more parameters if possible. Besides, when it comes
to the cascaded layers, it is kind of confusing that we should
manually compute the shapes of some layers and hard-code
it in. It’ll be much better if this part could be automatically
handled.

IV. RESULTS AND SUMMARY

First of all, I specify some hyper-parameters as indicated in
Table I. I didn’t tune them, and for all other hyper-parameters,
I used the default settings, as required.

Parameter learning rate # epochs batch size momentum
Value 0.01 6 64 0 (default)

TABLE I
MY PARAMETERS

As for the datasets, I used MNIST and CIFAR10, according
to the requirements.

Although it is clearly stated in the project assignment
that we don’t need to tryout different settings, I am kind
of curious about what impact would normalization bring
to the performance, so personally I tried with and without
normalization on both datasets.

The accuracy of prediction on test dataset, after 6 epochs,
is as shown in Table II. It shows that the naive CNN approach
performs much better on MNIST than on CIFAR10, and that
with normalization, the accuracy is significantly increased.

However, as is shown in Figure 1, normalization of the data
points slows down the training process a little bit. But generally
speaking, considering the benefit, this delay could be ignored.

3Here I should specifically thank Haoran, for giving me this hint.

https://www.csie.ntu.edu.tw/~cjlin/courses/optdl2019/slides/proj_simple_sg_pytorch.pdf
https://pytorch.org/get-started/locally/
https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/nn.html
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
https://pytorch.org/docs/stable/optim.html
https://www.anaconda.com/distribution/#macos
https://pytorch.org/docs/stable/_modules/torch/optim/sgd.html
https://pytorch.org/docs/stable/_modules/torch/optim/sgd.html
https://pytorch.org/docs/stable/_modules/torch/nn/modules/padding.html
https://pytorch.org/docs/stable/_modules/torch/nn/modules/padding.html
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Normalized? MNIST CIFAR10
NO 0.9764 0.4701
YES 0.9827 0.555

TABLE II
FINAL ACCURACY ON DIFFERENT SETTINGS

Comparing the model’s performance on the two datasets,
Figure 3 shows how well it converges, and Figure 2 shows its
performance measured by accuracy of prediction on test set.
It shows that the dataset’s features have great impact on the
outcome of the model.

Other results of loss and accuracy are shown in the figures
listed.
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Fig. 1. Running Time for the Four Cases
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Fig. 2. Accuracy on the Datasets
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Fig. 3. Training-Loss on the Datasets
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Fig. 4. Test Accuracy on MNIST
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Fig. 5. Training Loss on MNIST
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Fig. 6. Test Accuracy on CIFAR10
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Fig. 7. Training Loss on CIFAR10
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