
About SGD Convergence Analysis of 2
layer NN with Non-linear Activation

Song Jiang, Yewen Wang, Zhiping Xiao

12/12/2018



Contents

I Highlight

I Background

I Problem Formulation

I Main Theorem and Overview of Proof

I Experiments

I Other Attempts



Contents

I Highlight

I Background

I Problem Formulation

I Main Theorem and Overview of Proof

I Experiments

I Other Attempts



Highlight

I Comprehensive literature review

I SGD Convergence analysis on on-hidden-layer NN with
Non-linear activation

I Other attempts on SGD convergence analysis on NN with
different layers, structures, or for different non-convex
problems

I Auxiliary experiments



Contents

I Highlight

I Background

I Problem Formulation

I Main Theorem and Overview of Proof

I Experiments

I Other Attempts



Background: Stochastic Gradient Descent on
One-hidden-layer Neural Network

I Simplifies the model by ignoring activation functions and
turn the NN into a linear one

I Rely on unrealistic assumptions with which can achieve
some nice properties such as all local are global

I With fancy well-designed initialization method

I Extra condition that the network should be wide enough

I Rely on specific network structures

I ...



Background: Convergence Analysis of Deep Neural
Network

I Still an open problem

I Almost all of them need the condition that the NN should
be over-parameterized



Background: Network with Identity Mapping

Figure 1: ResNet

Figure 2: DenseNet
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Problem Formulation: Network Architecture

Figure 3: Network Architecture

I One-hidden-layer

I Extra identity mapping

I PReLU Activation

I Teaching network and student network



Problem Formulation: Objective Function

I y(x,W ) = ||σ(Wx+ x)||1
I L(W ) = Ex[(y(x,W )− y(x,W ∗))2]

I L(W ) = Ex[(||σ(Wx+ x)||1 − ||σ(W ∗x+ x)||1)2]
I L(W ) = Ex[(Σi(σ(〈wi + ei, x〉)− σ(〈w∗

i + ei, x〉)))2]

Denote: x ∈ Rn×1 ∼ N (0, I) is input, y is the output,
W ∈ Rn×n is weight, σ is the activation function, || · ||1 is
L1-norm, e= e1, ..., en are the base vectors, W = (w1, ..., wn),
W ∗ = (w∗

1, ..., w
∗
n).



Problem Formulation: Proof Framework

Figure 4: Dynamics

I 2-phase process

I Phase1: probability of going to wrong direction decrease

I Phase2: get closer to global optima after each step
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Main: Preliminaries

I One-point convexity: A function f(x) is called δ-one
point strongly convex in domain D w.r.t. point x∗ if
∀x ∈ D, 〈−∇f(x), x∗ − x〉 > δ||x∗ − x||22

I Auxiliary Function: Denote
fA = Σi(||ei + w∗

i ||2 − ||ei − wi||2) the main auxiliary
function, and denote fA(i) = fA− (||ei +w∗

i ||2− ||ei−wi||2)
I Auxiliary Matrix: Denote

A = (W ∗ + I)W ∗ + I
T − (W + I)W + I

T
the main

auxiliary matrix, and denote

A(i) = A− ((ei + w∗
i )(ei + w∗

i )
T − (ei + wi)(ei + wi)

T
)



Main: Main Theorem

Main Theorem(informal)
While x ∼ N (0, I), ||W ||2 and ||W ∗|| are both bounded with
some small constant, SGD with small learning rate and initial
W0(random/zero/standard all work) will converge to W ∗ within
polynomial number of steps, in two phase.



Main: Overview of Proof

I Proof SGD will converge to global optima following the
2-phase process!

I Phase 1: auxiliary function decrease, and get into one point
convex region

I Phase 2: after every step, get closer to ||W ∗||



Main: Overview of Proof for Phase 1

Goal: Prove that ∃γ0 ∈ (0, γ) s.t. if

I ‖W0‖2, ‖W∗‖2 ≤ γ0
I d lower bounded by a constant, η with a upper bound

determined by γ and G (gradient), ε with upper bound
depending on γ

then: fA will keep decreasing until reaches Phase 2
(auxiliary function decreases to O(1)).
The decreasing factor for each step depends on η, d, number of
iterations depend on η, and the upper bound of fA after Phase
1 is decided by γ.



Main: Overview of Proof for Phase 1

Solution: approximation, introduces an auxiliary variable
s = (W∗ −W)u, u is the all-one vector.

1. Show that Phase 1 will reach Phase 2:

1.1 Calculate the update for fA and s. Expected to have an

approximation of s(t) and f
(t)
A , each depends on both s(t−1)

and f
(t−1)
A

1.2 Solve the dynamics from the above step to show that fA
approaches to and stays around O(γ).

2. Show that there’s NO WAY BACK from Phase 2 to
Phase 1.

I (fA decreases ⇒) ‖W‖2 remains small

3. Justify the form of A and fA
I Prove that using g and A we could successfully formulate an

approximation matrix P which approximates −∆L(W).



Main: Overview of Proof for Phase 2

Goal: Prove that ∃γ , with a small enough fA, s.t. L(W ) is a δ
one point strongly convexity. i.e., 〈−∇L(W ),W ∗ −W 〉 =∑d

j=1〈−∇L(W )j , w
∗
j − wj〉 > δ||W ∗ −W ||2F

Solution: Use Taylor expansion and control the higher order
term.

Then, lower bound each part of Taylor expansion. Note that
when W ≈W ∗, we will use joint Taylor expansion to overcome
a large higher term.



Contents

I Highlight

I Background

I Problem Formulation

I Main Theorem and Overview of Proof

I Experiments

I Other Attempts



Experiments: Stage 1
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Figure 5: Accuracy for NN with ReLU activation and PReLU
activation



Experiments: Stage 2
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Figure 6: Accuracy Curve for NN architecture with and without
identity mapping structure



Experiments: Stage 3
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Figure 7: Performance of NN with or without Identity Mapping while
given Zero Initialization



Experiments: Stage 4

Figure 8: (a)Loss with identity mapping and bound, (b)Loss without
Identity mapping, (c)Loss without bound, (d)||W −W ∗||2 with
identity mapping, (e)||W −W ∗||2 without identity mapping
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Attempts: Deepen the Network

I y(x,W ) = ||σ(WN ....σ(W2σ((W1x)))||1
I Turn to linear? y(x,W ) = ||σ(WN ...W2W1x))||1
I Not applicable!



Attempts: Vary the Network Structures

I ResNet..DenseNet..?

I Common constrain: over-parameterized!

I y(x,W ) = ||σ((WN + iNI)....σ((W2+ i2I)σ((W1+ i1I)x)))||1
where ij is 0 or 1 indicating if this layer has an identity
mapping

I Still not applicable



Attempts: Several Non-convex Problems

I When σ varies, become different non-convex problem

I Slightly change..?

I No! A lot of work needed including redefine auxiliary
matrix and auxiliary function, thus will lead to totally
different proof method for each stage!



THANKS ‖ FREE TO ASK

I Comprehensive literature review: 3 types

I SGD Convergence analysis: on-hidden-layer NN with
PReLU activation

I Several attempts: NN with different layers, structures,
or for different non-convex problems

I Auxiliary experiments: 4 stage
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