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Background: Stochastic Gradient Descent on
One-hidden-layer Neural Network

» Simplifies the model by ignoring activation functions and
turn the NN into a linear one

> Rely on unrealistic assumptions with which can achieve
some nice properties such as all local are global

» With fancy well-designed initialization method
» Extra condition that the network should be wide enough

» Rely on specific network structures



Background: Convergence Analysis of Deep Neural
Network

» Still an open problem

» Almost all of them need the condition that the NN should
be over-parameterized



Background: Network with Identity Mapping
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Problem Formulation: Network Architecture
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Figure 3: Network Architecture

One-hidden-layer

Extra identity mapping

PReLU Activation

Teaching network and student network



Problem Formulation: Objective Function

v
<

(@, W) = [le(Wz + z)||x

> L(W) = Eo[(y(a, W) — y(z, W))?]
> L(W) = Eo[([lo(Wa + )|l — [[o(W*z + 2)|}1)?]
> L(W) = Eo[(Si(o((w; + €5, ) — o((w] + €i,2))))?]

Denote: z € R™*! ~ N(0, ) is input, y is the output,

W e R™™ "™ is weight, o is the activation function, || - ||1 is
Ll-norm, e= ey, ..., e, are the base vectors, W = (wy, ..., wy,),
W* = (wj,...,w}).

n



Problem Formulation: Proof Framework

Figure 4: Dynamics

» 2-phase process
» Phasel: probability of going to wrong direction decrease

» Phase2: get closer to global optima after each step
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Main: Preliminaries

» One-point convexity: A function f(x) is called §-one
point strongly convex in domain D w.r.t. point x* if
Vo € D, (-Vf(x),z* —z) > §||z* — =||3
» Auxiliary Function: Denote
fa=%i(|lei + w||2 — ||lei — wi||2) the main auxiliary
function, and denote fa(i) = fa — (||e; +w}||2 — ||ei — wil|2)
» Auxiliary Matrix: Denote
A=W+ D)W*+1 —(W+DW +1 the main
auxiliary matrix, and denote
A(i) = A= ((e; + w)(er +wh) — (e +wi)(es +wi) )




Main: Main Theorem

Main Theorem/informal)

While & ~ N(0,1), ||W||2 and |[W*|| are both bounded with
some small constant, SGD with small learning rate and initial
Wo(random/zero/standard all work) will converge to W* within
polynomial number of steps, in two phase.



Main: Overview of Proof

> Proof SGD will converge to global optima following the
2-phase process!

» Phase 1: auxiliary function decrease, and get into one point
convex region

» Phase 2: after every step, get closer to ||[W*||



Main: Overview of Proof for Phase 1

Goal: Prove that 3y € (0,7) s.t. if
> [Woll2, [W*]l2 <70

» d lower bounded by a constant, n with a upper bound
determined by v and G (gradient), e with upper bound
depending on 7y

then: f4 will keep decreasing until reaches Phase 2
(auxiliary function decreases to O(1)).

The decreasing factor for each step depends on 7, d, number of
iterations depend on 7, and the upper bound of fa after Phase
1 is decided by 7.



Main: Overview of Proof for Phase 1

Solution: approximation, introduces an auxiliary variable
s = (W* — W)u, u is the all-one vector.

1. Show that Phase 1 will reach Phase 2
1.1 Calculate the update for f4 and s. Expected to have an
approximation of s®) and fX), each depends on both s(t=1)
(t—1)
and f,
1.2 Solve the dynamics from the above step to show that f4
approaches to and stays around O(7).

2. Show that there’s NO WAY BACK from Phase 2 to
Phase 1.

> (fa decreases =) ||[W]||3 remains small
3. Justify the form of A and f4

» Prove that using g and A we could successfully formulate an
approximation matrix P which approximates —AL(W).



Main: Overview of Proof for Phase 2

Goal: Prove that 3y , with a small enough f4, s.t. L(W) is a d
one point strongly convexity. i.e., (=VL(W), W* - W) =
d * *
S (=VLW)j, wh —wj) > 6||W* — WI[E
Solution: Use Taylor expansion and control the higher order

term.

higher %
constant|+4| 1 order |+ order |, W: W)

—~

Then, lower bound each part of Taylor expansion. Note that
when W = W*, we will use joint Taylor expansion to overcome
a large higher term.
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Experiments: Stage 1

Average Error on 5 tryouts

—— PRelLU avarage accuracy
—— ReLU avarage accuracy
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Figure 5: Accuracy for NN with ReLU activation and PReLU
activation



Experiments: Stage 2

Average Error on 5 tryouts

—— PReLU with identity mapping avarage accuracy
—— PReLU without identity mapping avarage accuracy
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Figure 6: Accuracy Curve for NN architecture with and without
identity mapping structure



Experiments: Stage 3

Proof of Zero Initialization using single layer PReLU network
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Figure 7: Performance of NN with or without Identity Mapping while
given Zero Initialization



Experiments: Stage 4

Loss With Identity 2 Loss Without Identity_2
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Figure 8: (a)Loss with identity mapping and bound, (b)Loss without
Identity mapping, (c)Loss without bound, (d)||W — W*||3 with
identity mapping, (e)||W — W*||; without identity mapping
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Attempts: Deepen the Network

> y(z, W) = llo(Wy...o(Wao (W12))) 1
» Turn to linear? y(x, W) = |lo(Wn..WolW12))||1
» Not applicable!



Attempts: Vary the Network Structures

» ResNet..DenseNet..?

» Common constrain: over-parameterized!

> y(z, W) = |lo(Wn +inI)...o(Watiol)o (W1 +i11)x)))| |1
where i; is 0 or 1 indicating if this layer has an identity
mapping

» Still not applicable



Attempts: Several Non-convex Problems

» When o varies, become different non-convex problem
» Slightly change..?
» No! A lot of work needed including redefine auxiliary

matrix and auxiliary function, thus will lead to totally
different proof method for each stage!
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Comprehensive literature review: 3 types

SGD Convergence analysis: on-hidden-layer NN with
PReLU activation

Several attempts: NN with different layers, structures,
or for different non-convex problems

Auxiliary experiments: 4 stage
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