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Abstract

Neural networks are increasingly popular during the past few years, with promising1

performance on various tasks in diverse fields. Recently, SGD based method are2

widely explored and became a standard training method for Neural Networks.3

In this work, we tried to analyze the convergence of SGD on 1-hidden-layer4

feedforward networks with Non-linear activation and "identity mapping" structure5

under the constrain that the input obeys normal distribution. We also conduct6

related experiments to give an intuitive support of our theorem.7

Also, we made multiple attempts including exploring SGD’s convergence on NN8

with multiple layers or with special structures or with other activation functions.9

Discussions about our attempts and corresponding problems we met will be pro-10

vided in this report.11

Note: Our experiment code will be submitted as supplementary materials on CCLE.12

Also, there are still some unclear parts, and hopefully we can fix those parts later.13

Most parts of our detailed proof could be provided(handwritting version) if needed.14

1 Introduction15

Neural networks are increasingly popular during the past few years, with promising performance on16

various tasks in many fields. Stochastic gradient descent is applied in countless experiments, resulting17

in satisfying outcome. However, with different network architectures, there are various landscapes18

and some of them contains bad local minima and sandle points. It still remains not that clear when19

can SGD guarantee a convergence to global minima and there still lacks solid complete theoretical20

guarantees that SGD can have good performance when finding the desired weights for such neural21

networks.22

To bridge this gap, in this project, we conducted a comprehensive literature review about theoretical23

guarantee for SGD convergence analysis of one-hidden-layer neural networks, summarized its related24

theorems and proof methods, Also, followed the work of [13], we tried to prove the convergence of25

stochastic gradient descent on feed-forward one-hidden-layer neural network with "identity mapping"26

structure and Non-linear activation function under the constraint that the network’s input satisfies27

normal distribution. What is more, we took several other attempts including deepening the neural28
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network, changing the structure of neural networks(to Resnet[9, 8] and DenseNet[10]), or focusing29

on other non-convex problems. Also, we conducted several auxiliary experiments to provide an30

intuitive support of our theorem.31

The rest of this report is developed as follows: Section 2 provides a thoroughly literature review about32

SGD convergence analysis on NNs and NN with identity mapping structure. Section 3 illustrates33

how we formulate our problem and gives our main theorem. Section 4 is an overview of proofs in34

which we discuss the general proof roadmap and some key difficulties for the proof. Section 5 shows35

some experiment results which could be an intuitive support for our theorems. Section 6 concludes36

other attempts we made and discusses possible reasons why we failed in those attempts. Section 737

performs as a summary of our work.38

2 Literature Review39

Generally, the related works can be divided in to three types, the first type is about SGD convergence40

analysis for one-hidden-layer neural networks, the second type is the work expanding the network to41

multiple layers and analyze those deep neural networks, the last type is focusing on neural networks42

with an advanced structure – identity mapping. In this literature review section, we tried to summarize43

and elaborate these three types of related work.44

2.1 Stochastic Gradient Descent on One-hidden-layer Neural Network45

Recently, stochastic gradient descent has been widely leveraged in seeking the optimal parameters46

of neural network. While proving its convergence to the global minima, problem might occurs47

because even for the simplest setting where the neural network has only one hidden layer and is a48

feed forward network, SGD will probably get stuck at local minima or saddle points. To deal with49

such unsatisfactory situations, various solutions are brought by previous works.50

Some works may simplifies the model by ignoring the activation functions and turn the network into51

a linear deep neural network. The work of Kenji in 2016 is a representative one of this type[11], it52

first proves that for deep linear neural networks with any depth and any weights and squared loss53

function, the loss is always non-convex and every local minima would be a global minima, then, this54

work proves for deep nonlinear neural networks, we can always conduct a reduction to linear model55

under the independence assumption, thus it can still have those properties they proved before for56

linear models. With these properties, SGD for such kind of problem can achieve convergence to57

global minima.58

Some works may rely on some unrealistic assumptions with which local minima would have some nice59

properties[6, 12, 14, 3]. For example, focusing on the simple non-trivia ReLU neural networks, [14]60

proves that spurious local minima is guaranteed when k, the size of weight per layer, is fixed within61

certain range. From this point of view, it provides an answer on why neural network are successfully62

trained even if the associated optimization problem has non-convexity, and what assumptions could63

mitigate this problem.64

Some works design advanced initialization method to guarantee SGD’s convergence[16]. In the work65

of [16] section 5.2, the author applied a Tensor Method to obtain a proper initialization point, with66

which SGD can converge to global minima.67

Some works guarantees SGD’s convergence on over-parameterization networks, that is, based on68

the assumption that the network is wide enough. For example, [5] proved that even with random69

initialization, first-order methods can achieve zero training loss even if the objective function is70

neither smooth or convex as long as the hidden layer is wide enough.71

Some works rely on specific network structures to ensure SGD can converge to global minima[13].72

This is also a work that is most closely to our project. In this work, it proves that with a special73

structure, “Identity Mapping”, stochastic gradient descent will converge to the global minimum of74

two-layer neural network in polynomial number of steps. The “Identity Mappin” structure makes the75

network asymmetric and thus guarantees a unique global minimum.76
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2.2 Convergence Analysis of Deep Neural Network77

Despite some success on theoretical analysis for 2-layer neural network, recently, people starts to78

tackle deeper neural networks and attempts to explore more about NN with multiple layers on the79

theoretical side. Though the convergence of SGD for deep neural networks still remains an open80

problem, there are already some existing works focus on such problem[2, 1, 17, 4].81

[2] focuses on the convergence speed on Recurrent Neural Networks(RNN) and provides its related82

theoretical understanding. It proved that as long as the number of neurons is sufficiently large, even83

with random initialization, SGD can minimize regression loss in a linear convergence rate.84

Another interesting work[4] gives theoretical analysis of gradient descent(instead of SGD) and proves85

rgar GD can reach the global optima for a deep over-parameterized neural network with residual86

connections. This work relies on such NN architecture to ensure the global optimality of the gradient87

descent algorithm.88

Also, there’s one recent work[1] that studies how SGD can get to global minima of deep neural89

networks(DNN). This work is also based on the assumption that the network is sufficiently wide,90

and can be applied to fully-connected neural networks, convolutional neural networks (CNN), and91

residual neural networks (ResNet).92

2.3 Network with Identity Mapping93

To improve the performance of neural networks, in some previous works, modifications of structures94

are made to construct stronger networks. Identity mapping, which is presented in [9], is such kind of95

modifications that gains widely application. It allows that signal could be directly propagated from96

one neural unit to any others, in both forward and backward passe, which guarantees information to97

flow unimpeded through the entire network.98

Based on the idea of identity mapping, there are two representative neural network architecture that99

outperform standard NN in most benchmark tasks. “ResNet”[9, 8] is a deep CNN architecture that has100

impressive performance for tasks such as image classification, object detect, semantic segmentation.101

Instead of simply stacking layers, ResNet added identity mapping, thus the deeper the network is, the102

lower error rate it will get(since identity mapping could guarantee that the deeper on will have at least103

same training error rate as the shallower one). Inspired by ResNet,[10] brought up “DenseNet”, which104

is an advanced convolutional network architecture that achieves the-state-of-art performance in image105

classification task on various benchmark datasets. This architecture comprises several “dense blocks”106

connected with convolution layers and pooling layers, each block is a convolutional feed-forward107

network with skip-connection(which is identity mapping) to flow information between earlier layers108

and later layers.109

3 Main Theorem110

In this section, we first puts how we formulate this problem and provide some preliminaries (including111

notation and related definitions), then we develop our main theorems.112

3.1 Problem Formulation113

In our project, we tried to analyze SGD’s convergence of single-hidden-layer neural network with114

some non-linear activation. First, for the activation, a Parametric Rectified Linear Unit (PReLU)[7] is115

proposed which generalizes the traditional rectified unit,which need almost no extra cost for compu-116

tation and overfitting risk while improving model fitting. Also, inspired by Residual Network[8], we117

add identity mapping. Thus, our network structure could be presented as Figure 1.118

With this architecture, we can develop a formal form for this problem as follows:119

Denote by x ∈ Rn×1 the input of the network, denote by W ∈ Rn×n the parameters forwarding120

message from input layer to hidden layer, denote by σ the activation function(which is PReLU in our121

case), the out put of our network architecture could be given as:122

y(x,W ) = ||σ(Wx+ x)||1 (1)
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Figure 1: Network Architecture

where || · ||1 denotes L1-norm which is the sum of all elements in “·”. Also, in our setting, input x123

should obey normal distribution, that is to say, x ∼ N (0, I).124

With the standard setting[15], we give the assumption that there exists a teaching network and a125

student network, both networks share the same structure which is a feed-forward 2 layer network126

with identity mapping and PReLU activation shown in Figure1. Denote by W ∗ the parameter(i.e.127

the weight) of teaching network, and W the parameter of student network. Our goal is to train the128

student network to learn the results given by teaching network. While training the student network,129

we apply quadratic loss, thus our objective function would be:130

L(W ) = Ex[(y(x,W )− y(x,W ∗))2] (2)

By applying equation 1, we will have:131

L(W ) = Ex[(||σ(Wx+ x)||1 − ||σ(W ∗x+ x)||1)2] (3)

And with algebra skills, denote by e= e1, ..., en the base vectors, and W = (w1, ..., wn), W ∗ =132

(w∗1 , ..., w
∗
n). Then the above equation3, would be written as:133

L(W ) = Ex[(Σi(σ(〈wi + ei, x〉)− σ(〈w∗i + ei, x〉)))2] (4)

By formulating the problem into this way, we find it can perfectly fit into a two phase framework134

brought up by [13] which was designed to analyze the convergence of SGD. In the two phase135

framework, SGD could be regarded as a 2 stages process. In the first stage, W may head towards136

wrong direction but with shrinking probability and will definitely get into a specific region(i.e. one-137

point region, which we will define in section3.2), which lead to stage 2. Then in this stage 2, W will138

for sure move towards correct direction, and thus finally converge to the target W ∗.139

3.2 Preliminaries140

In this section, we present some definitions and notations that will be used throughout the analysis.141

Basic Notations Basic notations appeared in the above sections remain the same as before. Plus, we142

denote θ(v1, v2) as the angle between vector v1 and vector v2, denote by M̄ the column-normalized143

version of matrix M .144

Definition1: One Point Strong Convexity[13] A function f(x) is called δ-one point strongly convex145

in domain D w.r.t. point x∗ if ∀x ∈ D, 〈−∇f(x), x∗ − x〉 > δ||x∗ − x||22.146

Definition2: Auxiliary Function Denote fA = Σi(||ei + w∗i ||2 − ||ei − wi||2) the main auxiliary147

function, and denote fA(i) = fA − (||ei + w∗i ||2 − ||ei − wi||2)148

Definition3: Auxiliary Matrix Denote A = (W ∗ + I)W ∗ + I
T − (W + I)W + I

T
the main149

auxiliary matrix, and denote A(i) = A− ((ei + w∗i )(ei + w∗i )
T
− (ei + wi)(ei + wi)

T
)150

3.3 Theorems151

Main Theorem While x ∼ N (0, I), ||w||2 ≤ γ and ||W ∗|| ≤ γ∗ are both bounded with some small152

constantγ, γ∗, SGD with small learning rate η and initial W0(random/zero/standard all work) will153

converge to W ∗ within polynomial number of steps, in two phase.154

This main theorem could be divided into two theorems, which are the theorem for phase 1 and phase155

2 respectively.156
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Theorem for Phase 1 While x ∼ N (0, I), ||w||2 ≤ γ and ||W ∗|| ≤ γ∗ are both bounded with some157

small constantγ, γ∗, then the auxiliary function fA will keep decreasing after every step until fA ≤ ε158

is small enough(which means we enter phase 2).159

Theorem for Phase 2 While x ∼ N (0, I), ||w||2 ≤ γ and ||W ∗|| ≤ γ∗ are both bounded with some160

small constantγ, γ∗, and fA ≤ ε, then 〈−∇L(W ),W ∗ −W 〉 > δ||W ∗ −W ||22 with constant δ.161

4 Overview of Proofs162

This section gives an overview of proofs of our main theorem. We first provide a flowchart as a clear163

roadmap to our proof, then we illustrate the key point of each part of the proofs. About detailed164

proofs, due to time limitation, we didn’t type out all our proofs within this latex document. We can165

provide a handwriting version of detailed proof if needed.166

4.1 Generally: A 2-stage Process167

To proof our theorem, we divide our proof into 2 stages. In the first stage, we proof that our W168

will definitely enter the one-point convexity region. To check if its a one-point convexity region, we169

calculate 〈−∇L(W ),W ∗ −W 〉 and proof it will be less than or equal to δ||W ∗ −W ||22. Here we170

have,171

∇L(W )j = 2Ex[(Σiσ(〈ei + wi, x〉)− Σiσ(〈ei + w∗i , x〉))x1〈ej+wj ,x〉≥0 (5)
172

+(Σiσ(〈ei + wi, x〉)− Σiσ(〈ei + w∗i , x〉))xα1〈ej+wj ,x〉<0] (6)

Then, after entering the one-point convexity region, we move to stage 2 and proof after each step, W173

will get closer to W ∗ with no exception.174

4.2 For Phase I175

Phase I aims at proving that, ∃γ0 ∈ (0, γ) s.t. If ||W0||2, ||W∗||2 ≤ γ0, and d has a constant lower176

bounded, η has a upper bound determined by γ and G the gradient, ε upper bounded by a term177

depending solely on γ, then the auxiliary function fA will keep decreasing until it reaches O(1),178

which is the condition of starting Phase 2.179

The decreasing factor for each step is influenced by η and d, the total number of iterations needed is180

determined by η, and the final value of fA after Phase I ends is decided by γ.181

In order to prove the above claims and to give a clear bound of all terms, we use approximations.182

The way we prove the decreasing trend of fA is by first introducing an auxiliary variable s =183

(W∗ −W)u, where u is the all-one vector, and then express s(t) and f (t)A , using s(t−1) and f (t−1)A .184

Then we could solve the dynamics from the previous step to show that g, a potential function that is185

expected to depend on fA, approaches to and stays around O(γ).186

The second task of Phase I is to use the conclusion that fA decreases to prove that ||W|| remains187

small. This limitation will guarantee that once we move on to Phase II, there is no possibility of188

coming back to Phase I.189

A and fA are useful tools to help with constructing a matrix P to approximate −∇L(W ). The proof190

of that P is an appropriate approximation should also be provided in Phase I.191

4.3 For Phase II192

The goal of Phase II is to prove that SGD can obtain optimal parameters in the small region derived193

from Phase I. i.e., Prove that ∃γ with a small enough fA, s.t. L(W ) is a δ one point strongly convexity.194

The formal is shown as follow.195

〈−∇L(W ),W ∗ −W 〉 =

d∑
j=1

〈−∇L(W )j , w
∗
j − wj〉 > δ||W ∗ −W ||2F (7)

Here we use Taylor expansion and control the higher order term, which is shown in figure 2 Then,196

lower bound each part of Taylor expansion separately. Note that when W ≈ W ∗, we will use197
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Figure 2: Taylor expansion
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Figure 3: (a).Accuracy for NN with ReLU activation and PReLU activation, (b).Accuracy Curve for
NN architecture with and without identity mapping structure, (c).Performance of NN with or without
Identity Mapping while given Zero Initialization

joint Taylor expansion to overcome a large higher term. Then, we lower bound each part of Taylor198

expansion by c ∗ ||W ∗ −W ||2F , where is c is a small constant related to fA. Note that the value of199

fA is derived via Phase I.200

5 Experiments201

We designed a 4-stages experiment, each stage of experiment will perform as an auxiliary support for202

our main theorem.203

5.1 Stage1: Show the Advancement of PReLU Activation204

In the first stage of our experiment, we tried to show the advancement of PReLU activation even with205

one-hidden-layer neural network. Here we used MNIST handwritten digits dataset, trained with two206

layer NN without identity mapping, and with PReLU activation and ReLU activation respectively(so207

there are two different settings). We conducted each setting of experiments for 5 times and took the208

average of those tryouts. The curve of error rate we obtained is presented in Figure3(a).209

For ReLU without identity mapping, random initialization, we get an average error rate of 0.01768.210

And for PReLU, without identity mapping, random initialization, we get an average error rate of211

0.01742. The results indicates PReLU’s advancement successfully.212

5.2 Stage2: Validate Identity Mapping Helps in Improving Accuracy213

In the second stage of our experiment, we tried to show the advancement of identity mapping with214

one-hidden-layer neural network. The dataset we applied remains the same as in stage 1, trained with215

two layer NN with and without identity mapping respectively, and with PReLU activation(so there216

are still two different settings). We conducted each setting of experiments for 5 times and took the217

average of those tryouts. The curve of error rate we obtained is presented in Figure3(b).218

For PReLU without identity mapping, random initialization, we get an average error rate of 0.01742.219

And for PReLU with identity mapping, random initialization, we get an error rate of 0.01646. The220

result indicates identity mapping’s advancement successfully.221

5.3 Stage3: Validate Zero Initialization Works222

In the third stage of our experiment, we tried to show the important role identity mapping plays while223

with zero initialization. Again, most the experiment settings remains the same as in stage 2, but the224
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Figure 4: (a).Loss with identity mapping and bound, (b).Loss without Identity mapping, (c).Loss
without bound, (d)||W −W ∗||2 with identity mapping, (e)||W −W ∗||2 without identity mapping

for the initialization we use zeros instead of some random values. The curve of error rate we obtained225

is presented in Figure3(c).226

For PReLU without identity mapping, zero initialization, we get an average error rate of 0.8865. And227

for PReLU with identity mapping, zero initialization, we get an error rate of 0.0165. This result228

sufficiently illustrates that with identity mapping, the zero initialization will still work(and almost229

have the same performance as random initialization).230

5.4 Stage4: Global Minimum Convergence231

Following the work of[15, 13], we utilized one teacher network and at least one student network,232

where teacher network knows the ground truth optima parameters W∗, while the students will learn233

W via l2 loss.234

In this stage, we tried to show that, while ||W ||2 and ||W ∗||2 are bounded by some small value, when235

applying identity mapping, SGD can converge to global minima with zero error rate. Here we used236

random generalized input dataset of dimension d = 10 and size of 5000, both our teaching network237

and student network share the same structure of 2-layer with PReLU activation, for the training238

process of student network, we set learning rate as 0.1 and epoch as 10. We observed the loss with239

and without identity mapping, and with and without bound of ||W ∗||2. For the bound, we set ||w∗||2240

= 0.1 and ||w∗||F = 1. To avoid coincidence, we conducted each setting of experiments for 5 times241

and took the average of those tryouts. The curves we obtained is presented in Figure4.242

This result sufficiently presents that both the bound of ||W ∗||2 and the identity mapping are crucial243

to SGD’s convergence.244

6 Other Attempts245

We also took several steps in the SGD convergence analysis for neural networks, trying to see if this246

nice 2-phase framework is still applicable. Those attempts include: extending the proof framework247

to multiple layers neural networks, varying the network structures, and formulating several other248

non-convex problems and applying the proof framework to them. Though failed to achieve complete249

and solid proofs (or sometimes even failed to find a proper way to formulate the main theorem), we250

still want to discuss about those attempts and analyze why we failed in those attempts.251
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6.1 Deepen the Network252

Our first step is to deepening the network by stacking multiple layers with identity mapping and253

trying to extend the 2 phase framework[13] to deep neural networks. Then, by doing so, the problem254

would be formulated as(take N-hidden-layers as example):255

y(x,W ) = ||σ((WN + I)....σ((W2 + I)σ((W1 + I)x)))||1 (8)

Then, while dealing with L(W), we find it hard to formulate it in an elegant way like equation4 does,256

thus, by referring to the work[11], we tried to applied the way brought up by this work to turn our257

non-linear deep neural network into a linear form via reduction, thus it would be equipped with the258

following formula:259

y(x,W ) = ||σ((WN ...W2W1 + I)x))||1 (9)

which could be the exactly the same as the problem setting the 2-phase framework has. However,260

this would cause some problems. Because to simplify the network into a linear one, we ignored the261

activation functions by adding some constrains, which makes this problem less flexible, and thus262

made sure that all the global minima would be local minima, so that the proof of SGD’s convergence263

to global minima no longer meaningful(since one of the key contribution to the convergence analysis264

is to proof it can avoid sticking at local minima).265

According to the above statement, we found applying the two-stage framework on deep neural266

networks seems not to be an applicable idea.267

6.2 Vary the Network Structures268

We also tried to explore more about the convergence of SGD in diverse network structures. Based269

on the nice properties identity mapping has, naturally we came to ResNet and DenseNet, which are270

mentioned in section 2.3.271

However, with such network structures, it would then turn to deep neural network, thus we encountered272

the same problems in section 6.1, where the 2-stage proof framework no longer works for this273

situation.274

6.3 For Other Non-convex Problems275

Since in previous sections of this report, we’ve already formulate this problem in a nice way in which276

network function and loss function could be represent with the same equation14. By simply changing277

the activation function σ, our problem will be different(not slightly) while still remains a non-convex278

problem. However, even though, and thus we encountered lots of difficulties while figuring out the279

corresponding auxiliary function and auxiliary matrix. Since for each different activation function,280

there’s no uniform form of auxiliary function and auxiliary matrix(which means we need a different281

form of auxiliary function and auxiliary matrix), this attempt would turn to different direction and282

need diverse proof techniques corresponding with different activation. And we do not have enough283

time go down every branch of this path.284

7 Conclusion285

To sum up, in this project, our main work could be summarized into 4 parts, first, we conducted a286

comprehensive literature review including 3 types of related work(details are in section 2), second,287

we proved the convergence of SGD with one-hidden-layer neural network with PReLU activation and288

without constrains on initialization, third, though failed, we made several attempts on applying the289

nice 2-phase framework on NN with different layers, structures, or for different non-convex problems290

and analyzed why we can’t get expected theoretical results, last, we conducted a 4-stage experiment291

to support our theory intuitively.292
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