
Data Mining (CS 145) Midterm Cheat Sheet by Patricia Xiao

Model Data Type Task Type

Linear Regres-
sion

Vector Prediction

Logistic Regres-
sion

Vector Classification

Decision Tree Vector Classification

SVM Vector Classification

NN Vector Classification

KNN Vector Classification

K-means Vector Clustering

hierarchical
clustering

Vector Clustering

DBSCAN Vector Clustering

Mixture Models Vector Clustering

Models

• Dispersion: Quartiles& Inter Range (Q1 25%,
Q3 75%, IQR = Q3−Q1, Outlier 1.5 IQR away
Q1/3), 5 n Summary: min, Q1, median, Q3, max

• Bias: E(f̂(x)) − f(x), Variance: V ar(f̂(x)) =
E[(f̂(x)−E(f̂(x)))2], E[(f̂(x)− f(x)− ε] = bias2 +
variance + noise; E(ε) = 0, V ar(ε) = σ2;
bias→underfit; variance→overfit

• Model Evaluation and Selection: K-way cross va-
lidation, AIC (2k − 2 ln(L̂)) & BIC (k ln(n) −
2 ln(L̂)) (k params, n objs), Stepwise feature selec-
tion (forward: add, backward: from full model)

• Generalized Linear Model (GLM): exponential fa-
mily, p(y; η) = b(y)exp(ηTT (y)− a(η)); linear de-
cision boundary

• Bagging: Bootstrap Aggregating (multi-datasets
→ multiple classifiers → combine classifiers)

• Kernel: K(xi, xj) = Φ(xi)
TΦ(xj)

• Chain rule: ∂J/∂x = (∂J/∂y)(∂y/∂x)

• Minkowski distance (lh): d(x, y) = h

√∑d
i (xi − yi)h,

l1 Manhattan, l2 Euclidean, l∞ supremum; triangle
inequality applies (d(i, j) ≤ d(i, k) + d(k, j)).

• Confusion Matrix: True / False for correctness,
Positive / Negative for result

• Multi-class classification: All-vs-all (AVA) is better
than One-vs-All (OVA)

Basic Concepts

1. σ2 = E[(X − E(X))2] = E(X2)− E2(X)

2. ‖α‖2 = αTα where α is a vector.

3. (AB)T = BTAT , (AB)−1 = B−1A−1

4. ∂(Ax)
∂x = A, ∂(AX)

∂X = AT

5. ∂(xTAx)
∂x = xT (A+AT), ∂(XTATAX)

∂X = 2ATAX

6. X ∼ N(µ, σ2)⇒ f(X = x) = 1√
2πσ2

e−
(x−µ)2

2σ2

7. σ′(x) = σ(x)(1− σ(x))

8. log(ab) = b log a, log(ab) = log(a) + log(b)

9. Classifiers fi(x): var(
∑
i fi(x)

t) = var(fi(x))/t

10. a · b =
∑
aibi = ‖a‖‖b‖ cos (a, b)

11. normal n, any vector in plane, x, n · x = 0

12. covariance: σ(X1, X2) = E(X1 − µ1)(X2 − µ2)

Formula

1. mean - mode = 3 × (mean - median)
mode(peak)∼median∼mean(∼ tail)

2. Z-score (normalization): Z = x−µ
δ

(robust: mean

absolute deviation, zjf =
xif−meanf

sumf
) (nominal:

dummy variable(s), ordinal: (r−1)/(M−1)) where
r,M start from 1.

3. Logistic / Sigmoid Function: σ(x) = 1
1+e−x

4. Entropy: H(Y) = −
∑m
i=1 pi log(pi); Conditional

Entropy: H(Y |X) =
∑
x p(x)H(Y |X = x)

5. Cross Entropy Loss: H(q, p) = −
∑
k qk log(pk)

6. Lagrange multiplier α is used to solve Quadratic
Programming (e.g. SVM)

7. Soft margin (allow moving at a cost): minimizing
Φ(w) = 1/2wTw ⇒ Φ(w) = 1/2wTw + C

∑
ζi, li-

mitation y(wTxi + b) ≥ 1 ⇒ y(wTxi + b) ≥ 1 − ζi
(ζi ≥ 0); doesn’t affect the solution of SVM.

8. ROC (Receiver Operating Characteristics): TP rate
(y-axis) - FP rate (x-axis), score = area below curve

9. Dendrogram: the hierarchical, cut to clusters.

Tools

y = xTβ where bias term xi0 = 1, x: (n × (p + 1))
matrix, y: (n × 1) vector, β: ((p + 1) × 1) vector.
Continuous y = xβT . (OLS, Ordinary Least Square)
J(β) = 1

2n
(Xβ − y)T (Xβ − y) = 1

2n
(βTXTXβ − yTXβ −

βTXT y + yT y).
Closed form solution: ∂J

∂β
= 0, β̂ = (XTX)−1XT y

Gradient Descent: β(t+1) := β(t) − η∆
Batch GD: (converge) ∆ = ∂J

∂β
=

∑
i xi(x

T
i β − yi)/n

Stochastic GD: (n times) ∆ = −(yi − xTi β(t))xi
LR with Probabilistic Interpretation: (using MLE,
Maximum Livelihood Estimation) L(β) =

∏
i p(yi|xi, β) =∏

i p(N(xTi β, σ
2)) =

∏
i

1√
2πσ2

exp{− (ti−xTi β)
2

2σ2 }
Invertible XTX: add λ

∑p
j=1 β

2
j to

∑
i(yi − xTi β)2

(Ridge Regression, or linear regression with l2 norm)
Non-linear Correlation: create new terms e.g. x2

Linear Regression

Generalized linear model (GLM).

P (Y = 1|X,β) = σ(XTβ) = eX
T β

1+eXT β

P (Y = 0|X,β) = 1− σ(XTβ) = 1

1+eXT β

Y |X,β ∼ Bernoulli(σ(XTβ))
MLE: L =

∏
i p
yi
i (1− pi)1−yi , pi is P (Y = 1|X,β)

Eq to max log likelihood L =
∑
i(yixiβ − log(1 + ex

T
i β))

Gradient ascent βnew = βold + η ∂L(β)
∂β

Newton-Raphson update βnew = βold − (∂
2L(β)
∂β

)−1 ∂L(β)

∂β∂βT

Cross Entropy Loss (p for prediction, q for ground truth,
(q0, q1)|y=0 = (1, 0), (q0, q1)|y=1 = (0, 1), (p0, p1) =

(P (Y = 0), P (Y = 1)): H(p, q) = −yxTβ + log(1 + ex
T β)

Logistic Regression

A framework to approach maximum likelihood.
p(xi, zi = Cj) = wjfj(xi), p(xi) =

∑
j wjfj(xi)

p(D) =
∏
i p(xi) =

∏
i

∑
j wjfj(xi)

log(p(D)) =
∑
i log(

∑
j wjfj(xi))

E(expectation)-step assigns objects to clusters.

wt+1
ij = p(zi = j|θtj , xi)
∝ p(xi|zi = j, θtj)p(zi = j) = fj(xi)wj

M(maximization)-step finds the new clustering
w.r.t. conditional distribution p(zi = j|θtj , xi).

θt+1 = argmax
θ

∑
i

∑
j

wt+1
ij logL(xi, zi = j|θ)

EM Algorithm

1

m for |y| in D, v for |A|
Expected Information needed to classify a tuple in D:
Info(D) = −

∑m
i=1 pi log2(pi)

Info after split A: InfoA(D) =
∑v
j=1

Dj
D × Info(Dj)

Info Gain (ID3): Gain(A) = Info(D)− InfoA(D)
Info gain biases towards multivalued attributes.
SplitInfoA(D) = −

∑v
j=1

Dj
D
× log2(

Dj
D

)
GR (C4.5): GainRatio(A) = Gain(A)/SplitInfo(A)
GR biases towards unbalanced splits.
Gini(D) = 1−

∑m
j=1 p

2
j for impurity

GiniA(D) =
∑v
j=1

|Dj |
|D| Gini(Dj)

Gini (CART): ∆Gini(A) = Gini(D)−GiniA(D)
Gini index also biases towards multivalued attributes.
STOP: same class; last attr; no sample (maj. vot.)
Avoid Over Fitting: Pre/Post-pruning, random forest
Classification → Prediction: Maj. Vote → e.g. Avg
for leaf node.
turn to regression tree, V ar(Dj) =

∑
y∈Dj (y −

y)2/|Dj |, look for the lowest weighted average vari-

ance V arA(D) =
∑v
j=1

|Dj |
|D| × V ar(Dj)

A different view: leaf = box in the plane
Random forest is a set of trees, ensemble, bagging, good
at classification, handles large & missing data, not good
at predictions, lack interpretation.

Decision Tree

y = sign(W ·X + b), separating hyperplane y = 0
SVM searches for Maximum Marginal Hyperplane
To Maximize Margin ρ = 2

‖w‖ , w. Lagrange multiplier

α, L(w, b, α) = 1
2w

Tw −
∑N
i=1 αi(yi(w

Txi + b)− 1).
∂L
∂w = w −

∑N
i=1 αiyixi = 0, ∂L∂b = −

∑N
i=1 αiyi = 0

Solution: w =
∑
αiyixi, b = yk − wTxk

f(x) = wTx+ b =
∑
αiyix

T
i x+ b default threshold 0

Linear v.s. Non-linear SVM: Kernel
Non-linear Decision Boundary: f(x) = wTΦ(x) + b =∑
αiyiK(xi, x) + b

Scalability: CF-Tree, Hierarchical Micro-cluster, se-
lective declustering (decluster the clusters who could
be support cluster; support cluster: centroid on sup-
port vector)

SVM

xi
wi−→
∑

(+b)
f−→ o

Input vector x, Weight vector w, Bias b, weighted
sum, going through activation function f , reach out-
put o.

Perceptron (Single Unit)

Stochastic GD + Chain Rule
Special case: Sigmoid + Square loss, 2 layers
Assume: i, j, k are input, hidden, output layers’ de-
notion, and O for output, T for true value.
Errk = Ok(1 − Ok)(Tk − Ok), Errj = Oj(1 −
Oj)

∑
k Errkwjk, wij = wij + ηErrjOi and wjk =

wjk+ηErrkOj , θj = θj+ηErrj and θk = θk+ηErrk.
∂J
∂wij

= ∂J
∂Ok

∂Ok
∂Oj

∂Oj
∂wij

= −
∑
k[(Tk − Ok)][Ok(1 −

Ok)wjk][Oj(1−Oj)Oi]

Backpropagation (BP)

nlayers = nhidden + noutput(1)
Feed-forward, Non-linear regression, capable of any
continuous function.
Backpropagation is used for learning.

Neural Network (NN)

Lazy learning (instead of eager), instance-based
Consider k nearest neighbors; maj. voting or average.
(Could be distance-weighted.)
Curse of dimensionality: influence of noise
Get rid of irrelevant features; select proper k.
Proximity refers to similarity or dissimilarity.
Always applies to binary values. If nominal, could do
simple matching, or use a series of binary to represent
a non-binary; ordinal: rank, normalize zif =

rif−1
Mf−1 .

Proximity could be measured by |(0,1)|+|(1,0)|
all for sym-

metric variables, |(0,1)|+|(1,0)|
all−|(0,0)| or Jaccard coefficient

(similarity) |(1,1)|
all−|(0,0)| for asymmetric.

Mixed type attributes: weighted combine.
Another method: cosine similarity cos(d1, d2)

k - Nearest Neighbors (kNN)

Holdout method; Cross-validation (k-fold) LOO.
Confusion Matrix: True / False Positive / Negative
Accuracy = (TP + TN) / All
Error Rate = (FP + FN) / All
Sensitivity = TP / P (P = TP + FN)
Specificity = TN / N (N = FP + TN)
Precision = TP / P’ (P’ = TP + FP)
Recall = TP / P = Sensitivity
F1 / F-score = 2×Precision×Recall

Precision+Recall

Fβ = (1+β2)×Precision×Recall
β2×Precision+Recall (R: P = β : 1)

ROC curve: TP rate (y) - FP rate (x). (area under)
TPR = TP / P, FPR = FP / N

Evaluation: Classification

K-means: J =
∑k
j=1

∑
i wij‖xi − cj‖2

Assign wij = 1 to each xi closest cj ; assign the center
to be new centroid; stop when no change. O(tkn). For
continuous, convex-shaped data, sensitive to noise.
K-modes: mean→ mode, for categorical data
K-medoids: representative objects, e.g. PAM (s)
Hierarchical: bottom-up Agglomerative Nesting
(AGNES) merges two closest clusters until end up in
1; top-down DIANA (Divisive Analysis). O(n2).
Cluster Distance: Single link for min element-wise
dist; Complete link for max; average for avg element
pairs dist; centroid, medoid (center obj).
DBSCAN: Set Eps ε and MinPts. Neighborhood
defined as Nε(q) : {p ∈ D|dist(p, q) ≤ ε}. Core point
|Nε(q)| ≥MinPts. p is directly density-reachable
from q if q is core point and p ∈ Nε(q); density-
reachable if q → p2 → · · · → p; density-connected
if o → · · · → p

∧
o → · · · → q. Cluster: max

set density-connected points. Individual points are
noise. DFS O(n log n) w. spacial index, else O(n2).
Mixture Model: soft clustering (wij ∈ [0, 1] rather
than wij ∈ {0, 1}), joint prob of object i and cluster
Cj : p(xi, zi = Cj) = wjfj(xi), using EM algorithm.
Gaussian Mixture Model (GMM): ⊃ k-means
Generative model, for each object, pick cluster Z,
from X|Z ∼ N(µZ , σ

2
Z) sample value; Overall li-

kelihood function L(D|θ) =
∏
i

∑
j wjp(xi|µj , σ2

j);

E wt+1
ij = (wtjp(xi|µtj , (σ2

j)t))/(
∑
k w

t
kp(xi|µtk, (σ2

k)t)),

M µt+1
j = (

∑
i w

t+1
ij xi)/(

∑
i w

t+1
ij), (σ2

j)t+1 =

(
∑
i w

t+1
ij (xi − µt+1

j)2/(
∑
i w

t+1
ij), wt+1

j =
∑
i w

t+1
ij /n

(in 1-d case)
Why EM works? E-Step find tight lower bound L
of ` at θold, M-Step find θnew to maximize the lower
bound. `(θnew) ≥ L(θnew) ≥ L(θold) = `(θold)

Clustering

extrinsic (supervised) vs. intrinsic (unsupervised)
purity(C,Ω) = 1

N

∑
K maxj |ck∩ωj | (C out, Ω truth)

Normalized Mutual Information:
NMI(C,Ω) = I(C,Ω)√

H(C)H(Ω)

I(C,Ω) =
∑
k

∑
j P (ck ∩ ωj) log

P (ck∩ωj)
P (ck)P (ωj)

=∑
k

∑
j
|ck∩ωj |
N log

N |ck∩ωj |
|ck||ωj |

H(Ω) = −
∑
j P (ωj) logP (ωj) = −

∑
j
|ωj |
N log

|ωj |
N

Precision and Recall: same / different class / cluster
Select k: plot square loss - k, larger k smaller cost,
find knee points; BIC penaltize; Cross validation

Evaluation: Clustering

2

• σ =
√∑

(xi−x)2

n where |x| = n

• parallel line d = |c2|−c1|√
a2+b2

where ax+ by + c = 0

• ln(ex) = x, e = 2.718281828459 · · · ≈ 2.7183

• Likelihood is product of density (/ proba-
bility), log likelihood logL(θ) = `(θ) =∑
allx log(P (X = x)), find the max means

`′(θ) = 0

• A×B = C then cij = ai∗ · b∗j

• Newton-Raphson update converges fast

• Lasso: l1 norm’s another name

• For binary class, the entropy H =
∑
p log(p),

H(p) = p log(p) + (1− p) log(1− p), H(1− p) =
H(p), H is the maximum when p = 0.5. If log2

is chosen, H(0.5) = 1

• Supervised clustering pairs up the data points
C2
n, same-same = TP, diff-diff = TN. (n2) writ-

ten in vertex means C2
n.

• NN is sometimes written in the form of number
on edge and number on node, then the number
on edge means weight, the number on node me-
ans bias. Don’t forget bias. In a way bias could
be regarded as a threshold. Input layer Oi = xi

• p features (p-d input nodes), 3 + 4 hidden no-
des, 2 hidden layers, k output nodes, then
3p + 3 ∗ 4 + 4k weights are needed, 3 + 4 + k
biases are needed.

• In KNN, larger K causes under-fitting and smal-
ler K causes over-fitting.

• Method 1 to calculate A−1: do row-wise options
to [A|E], change it into [E|A−1]

• Method 2 to calculate A−1:

[
a b
c d

]−1

=

1
ad−bc

[
d −b
−c a

]
• Hessian matrix: second order partial deriv.

• H(p, q) = −yxTβ+log(1+exp (xTβ)) (y = 0/1,
LR)

Midterm Reviews

Model Data Type Task Type

Apriori Set Frequent Pat-
tern Mining

FP Growth Set Frequent Pat-
tern Mining

GSP Sequence Frequent Pat-
tern Mining

PrefixSpan Sequence Frequent Pat-
tern Mining

DTW Sequence Similarity Se-
arch

Naive Bayes for
text

Text Classification

pLSA Text Clustering

After Midterm

Each data point is also called “transaction”.
pattern = itemsets + association rules
motivation: find inherent regularities on data

K-itemset: a set of K items
absolute support (support count): frequency / occur
relative support: probability / fraction
Frequent: if an itemset’s support > threshold
rule X → Y : support = P (XY), confidence = P (Y |X)
closed patterns X: X is frequent, ∀Y ⊃ X,
support(Y) 6= support(X)
maximum patterns X: X is frequent, ∀Y ⊃ X,
support(Y) < threshold, Y is not frequent
Closed patterns is a lossless compression of frequency
patterns. (reduce # pattern & rules!)
Scalable mining methods: Apriori, FP-Growth, Eclat
∗ECLAT: Frequent Pattern Mining with Vertical Data

Frequent Pattern Mining Basis

A candidate generation-and-test approach
The Apriori property of frequent patterns: any no-
nempty subset of a frequent itemset is also frequent.
Apriori pruning: having infrequent subset = not fre-
quent (not to be generated / tested)
Method work-flow: initially, scan DB once for fre-
quent 1-itemset (L1) (and have all items in every tran-
saction ordered in decreasing frequency order); re-
cursively generate k candidate itemsets (Ck) from
k-1 frequent itemsets (Lk−1) (join + prune) (join =
self-joining Lk−1, join l1, l2 only when l1[: k − 2] ==
l2[: k − 2] and l1[k − 1] < l2[k − 1]); test the can-
didates against DB; terminate when no frequent or
candidate set can be generated.
TDB → C1 → L1 → C2 → C2(pruned) → L2 . . . ,
finally return all Lk (k DB scans) (argmaxk |Lk| ≈ 2)

Apriori

A frequent pattern-growth approach.
Apriori limit: BFS → multi-scan; Ck workload
Improving Apriori by reduce passes of TDB scans, sh-
rink n candidates, reduce workload of support coun-
ting of candidates thus facilitate it.
Partition: scan TDB twice. Partition, find local
frequent (relative support), any frequent set in TDB
must be frequent in at least one partition.
Hash-based technique: based on hash-map, focus on
C2 sets map to the same index. Count supports on a
hash-tree. (TID - T - {C2})
Sampling: select a sample of TDB, do Apriori, back
to TDB 1-scan verify boarders (abcd not ab) of clo-
sure frequent patterns, scan TDB again find missed.
FP-Tree: compressed from the DB. Scan DB once,
sort frequent 1-itemset descending order to be f− list
and scan it again. Header Table (columns: Item, fre-
quency, head-pointer) + prefix tree, with counts at
nodes, all nodes linked with a chain in order from the
head-pointer. Root node empty {}, other node are
like a : 3.
FP-Growth: DFS, avoid explicit candidate genera-
tion. Grow long patterns from short ones using lo-
cal frequent items only. Recursively mine FP-Tree by
conditional pattern base → conditional FP − Tree
until the tree has a single path or empty.
Projection (DB | itemset): all transactions having
the itemset. If d is freq in DB|abc, abcd freq.
Form p’s conditional pattern base: accumulate all
transformed prefix paths of the item p. e.g. If
there’s a path {} − f : 4− c : 3− a : 3−m : 3− p : 2,
the cond. base of p contains: fcam : 2
For each pattern-base accumulate the count for each
item and construct the conditional FP-tree.
The answer of frequent patterns add back the base.
e.g. {} − a : 3 − b : 2 for DB—c, then the frequent
patterns are ac, bc, abc.
Project on each one except the most frequent item,
do recursively, each time finds frequent x in DB|s to
be added to s so that sx be new frequent pattern.
Single Prefix-path: a special case, solution is to divide
and concatenate
Scaling: parallel / partition projection (of the fre-
quent items) (parallel: all at once, partition: in fre-
quency order)
Runtime grows slowly with the decreasing of th-
reshold, divide-and-conquer, compressed DB with
no candidate generation and test, scan entire DB once

FP Growth

3

Mining by exploring vertical data format, similar with
inverted index. Having a t-id list that stores the list
of transaction ids where a itemset appears, t(A). t(X)
= t(Y) means P (XY) is high; t(X) ⊂ t(Y) means
P (Y |X) is high. diffset is used to accelerate mining
(keep track of differences of tids).

Eclat

confidence(A⇒ B) = P (B|A) = P (AB)
P (A)

rule is from a frequent pattern l and all its non-empty subsets.

Lift(AB) = P (AB)
P (A)P (B) = 1 independent, > 1 positi-

vely correlated, < 1 negatively correlated

χ2 =
∑ (Observed−Expected)2

Expected has a table to check

p−value = P (χ2 > ∗), if p−value is small enough, it
rejects the null hypothesis, so A and B are dependent
all confidence = min{P (A|B), P (B|A)}
max confidence = max{P (A|B), P (B|A)}
Kulczynski = 1

2 (P (A|B) + P (B|A))

Cosine: cos(A,B) =
√
P (A|B)× P (B|A)

Lift and χ2 are affected by null-transaction, that is
the “not A and not B”s.
Imbalance Ratio (IR): IR(A,B) = |sup(A)−sup(B)|

sup(A)+sup(B)−sup(AB)

where sup refers to supports.

Association Rules

element / event is a non-empty unordered set of
items, sequence is an ordered list of events, length
is the number of instances of items included.
Always written like 〈a(bc)de(fgh)〉.
A is B’s subsequence means: any elements in A is
a subset of a corresponding element in B, those ele-
ments in B are in same order they appear in A.
Start from the same L1, the major difference is join.
In this case, s1 and s2 can be joined only if s1 with 1st

item dropped and s2 has the last item dropped are the
same. Joined together: s1[0], smid, s2[−1]. Note that
all the items in any element are “sorted” by f-list.

GSP

DB : {〈SID,EID, Items〉} ⇒ Item(SubSeq) :
{〈SID,EID〉}, and then join by growing the subse-
quences one at a time by Apriori (joining two of those
{〈SID,EID〉} tables for Items / Sub-Sequences, e.g.
a, b⇒ ab, ba⇒ aba, bab).
Similar limitations with GSP: costly generation &
multiple scans by BFS & long patterns

SPADE

: blank space used when the last item from prefix
is from the first element of suffix.
Prefix-based projection (α′): a projection of α w.r.t.
prefix β is the maximum subsequence of α with pre-
fix β. e.g. α = 〈a(abc)(ac)d(cf)〉, β = 〈ad〉, then
α′ = 〈ad(cf)〉
Start from L1, project the database into |L1| projec-
ted database accordingly, mine each subset recursively
via corresponding projected databases. (e.g. a-proj
⇒ ab-proj)
Note that a and a are different in counting frequen-
cies. With suffix last element s1, a only when a
appears at the front of the suffix, or see (s1a∗).
No candidate needed, major cost is projection, pro-
jected DB keeps shrinking and could be improved by
pseudo-projection (using pointers to point to the
division point of the prefix and suffix to save time
and space, work well unless DB is too big for main
memory, disk-access is slow).

Prefix Span

Time series Y = {Yt : t ∈ T}, time-index T .
An observation of time series with length N could be
represented as Y = {y1, y2, . . . yN}.
Euclidean distance: d(C,Q) = (

∑
|ci − qi|p)

1
p (lp)

Lp norm cannot deal with offset and scaling. (sol:

normalization c
′

i = ci−µ(C)
σ(C))

Warp time axis? Even with different length.
X = {x1, . . . xN}, Y = {y1, . . . yM}, find alignment
between s.t. overall cost is minimized. Local distance
(cost) between xn, ym: c(xn, ym). We could have an
N ×M matrix of costs between all pairs.
Our goal: find an (N, M)-warping path p =
(p1, p2, . . . , pL) with pl = (nl,ml), conditions: (1)
boundary, p1 = (1, 1), pL = (N,M); (2) monotoni-
city, nl,ml non-decreasing with l; (3) step size, 1,
pl+1 − pl ∈ {(0, 1), (1, 0), (1, 1)}
Solving by DP: D(n,m) = min{D(n−1,m), D(n,m−
1), D(n − 1,m − 1)} + c(xn, ym), where D(n,m) de-
notes the DTW distance between X(1, . . . n) and
Y (1, . . .m). D(N,M) = DTW (X,Y), D(n, 1) =∑n
k=1 c(xk, y1), D(1,m) =

∑m
k=1 c(x1, yk).

O(NM) time complexity.
Trace back to find p∗ from D, given that p(l) =
(n,m): pl−1 is (1,m − 1) if n = 1, (n − 1, 1) if
m = 1, and otherwise argmin{D(n− 1,m− 1), D(n−
1,m), D(n,m− 1)}

Dynamic Time Warping (DTW)

Sometimes series data need to be transformed into Fourier domain to evaluate.
Xf = 1√

n

∑n−1
t=0 xt exp(−j2πft/n), f = 0, 1, . . . , n

Parseval’s Theorem:
∑n−1
t=0 |xt|

2 =
∑n−1
f=0

|Xf |
2, Euclidean dist in time /

freq domains are the same. Keep only first few coefficients brings no false
dismissals.

Naive Time and Frequency Domain

jth lag of Yt: Yt−j , first diff ∆Yt = Yt − Yt−j , jth autocorre-

lation ρj : corr(Yt, Yt−j) =
cov(Yt,Yt−j√

var(Yt)var(Yt−j)
, cov(Yt, Yt−j) =

1
T−j−1

∑T
t=j+1(Yt − Y j+1,T)(Yt−j − Y 1,T−j). AR(1) check Yt = β0 +

β1Yt−1 + ut, β1 = 0 for useless.

Prediction

Bayes’ Theorem: P (h|X) = P (X|h)P (h)
P (X)

X data samples (evidence), h : class(X) = Y , P (X)
fixed, P (h) = π prior probability, P (X|h) likelihood∏
n β

xn
yn , P (X) =

∑
h P (X|h)P (h), P (h|X) poste-

rior probability. Maximum a posteriori hMAP =
argmaxh P (X|h)P (h). y∗ = argmaxy

∏
n β

xn
yn × πy =

argmaxy
∑
n xn log βyn + log πy

Optimization: n word, j class, D documents, d
document, βjn = count of word n in class j

count of all words in class j (smoothing:
···+1
···+N), πj = number of d in class j

|D|
For test document t, p(y = c|xt) ∝ p(y = c) ×∏
n(βcn)xtn where xtn is n’s appearance in xt.

A generative model (not discriminative - like log reg).
Generative model P (XY), discriminative P (Y |X)
Multinoulli distribution is two options, multi-tryout
(z ∼ multinoulli(π)), while Multinomial means
multi-class, one tryout ((xd ∼ multinoumial(βd))).

Naive Bayes for Text

corpus: a collection of documents, word w, doc d,
topic z, word count in doc c(w, d), word distribution
each topic βzw = p(w|z), topic (soft) distribution each
document θdz = p(z|d).
max logL =

∑
dw c(w, d) log

∑
z θdzβzw s.t.

∑
z θdz =

1,
∑
w βzw = 1 is optimized by EM until con-

verge. Generally E: p(z|w, d) ∝ p(w|z, d)p(z|d) =
βzwθdz, M: βzw ∝

∑
d p(z|w, d)c(w, d), θdz ∝∑

w p(z|w, d)c(w, d). e.g. E: p(z|w, d) = βzwθdz∑
z′ βzwθdz′

,

M: βzw =
∑
d p(z|w,d)c(w,d)∑

w′,d p(z|w′,d)c(w′,d) , θdz =
∑
w p(z|w,d)c(w,d)

Nd
,

where Nd is the count of words in the document.

pLSA

4

