Data Mining (CS 145) Midterm Cheat Sheet by Patricia Xiao

Models

liteacib		
Model	Data Type	Task Type
Linear Regres-	Vector	Prediction
sion		
Logistic Regres-	Vector	Classification
sion		
Decision Tree	Vector	Classification
SVM	Vector	Classification
NN	Vector	Classification
KNN	Vector	Classification
K-means	Vector	Clustering
hierarchical	Vector	Clustering
clustering		
DBSCAN	Vector	Clustering
Mixture Models	Vector	Clustering

Basic Concepts

- **Dispersion:** Quartiles& Inter Range (Q_1 25%, Q_3 75%, IQR = $Q_3 Q_1$, Outlier 1.5 IQR away $Q_{1/3}$), 5 n Summary: min, Q_1 , median, Q_3 , max
- Bias: $E(\hat{f}(x)) f(x)$, Variance: $Var(\hat{f}(x)) = E[(\hat{f}(x) E(\hat{f}(x)))^2]$, $E[(\hat{f}(x) f(x) \epsilon] = bias^2 + variance + noise; E(\epsilon) = 0$, $Var(\epsilon) = \sigma^2$; bias \rightarrow underfit; variance \rightarrow overfit
- Model Evaluation and Selection: K-way cross validation, AIC $(2k 2\ln(\hat{L}))$ & BIC $(k\ln(n) 2\ln(\hat{L}))$ (k params, n objs), Stepwise feature selection (forward: add, backward: from full model)
- Generalized Linear Model (GLM): exponential family, p(y; η) = b(y)exp(η^TT(y) a(η)); linear decision boundary
- **Bagging:** Bootstrap Aggregating (multi-datasets → multiple classifiers → combine classifiers)
- Kernel: $K(x_i, x_j) = \Phi(x_i)^T \Phi(x_j)$
- Chain rule: $\partial J/\partial x = (\partial J/\partial y)(\partial y/\partial x)$
- Minkowski distance (l_h) : $d(x, y) = \sqrt[h]{\sum_i^d (x_i y_i)^h}$, l_1 Manhattan, l_2 Euclidean, l_∞ supremum; triangle inequality applies $(d(i, j) \le d(i, k) + d(k, j))$.
- **Confusion Matrix:** True / False for correctness, Positive / Negative for result
- Multi-class classification: All-vs-all (AVA) is better than One-vs-All (OVA)

Formula 1. $\sigma^2 = E[(X - E(X))^2] = E(X^2) - E^2(X)$ 2. $\|\alpha\|^2 = \alpha^T \alpha$ where α is a vector. 3. $(AB)^T = B^T A^T$, $(AB)^{-1} = B^{-1}A^{-1}$ 4. $\frac{\partial(Ax)}{\partial x} = A$, $\frac{\partial(AX)}{\partial X} = A^T$ 5. $\frac{\partial(x^T A x)}{\partial x} = x^T (A + A^T)$, $\frac{\partial(X^T A^T A X)}{\partial X} = 2A^T A X$ 6. $X \sim N(\mu, \sigma^2) \Rightarrow f(X = x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ 7. $\sigma'(x) = \sigma(x)(1 - \sigma(x))$ 8. $\log(a^b) = b \log a$, $\log(ab) = \log(a) + \log(b)$ 9. Classifiers $f_i(x)$: $var(\frac{\sum_i f_i(x)}{t}) = var(f_i(x))/t$ 10. $a \cdot b = \sum a_i b_i = ||a|| ||b|| \cos(a, b)$ 11. normal **n**, any vector in plane, **x**, $\mathbf{n} \cdot \mathbf{x} = 0$ 12. covariance: $\sigma(X_1, X_2) = E(X_1 - \mu_1)(X_2 - \mu_2)$ Tools

- 1. mean mode = $3 \times (\text{mean} \text{median})$ mode(peak)~median~mean(~ tail)
- 2. Z-score (normalization): $Z = \frac{x-\mu}{\delta}$ (robust: mean absolute deviation, $z_{jf} = \frac{x_{if}-mean_f}{sum_f}$) (nominal: dummy variable(s), ordinal: (r-1)/(M-1)) where r, M start from 1.
- 3. Logistic / Sigmoid Function: $\sigma(x) = \frac{1}{1+e^{-x}}$
- 4. Entropy: $H(Y) = -\sum_{i=1}^{m} p_i \log(p_i)$; Conditional Entropy: $H(Y|X) = \sum_x p(x)H(Y|X = x)$
- 5. Cross Entropy Loss: $H(q, p) = -\sum_{k} q_k \log(p_k)$
- 6. Lagrange multiplier α is used to solve Quadratic Programming (e.g. SVM)
- 7. Soft margin (allow moving at a cost): minimizing $\Phi(w) = 1/2w^T w \Rightarrow \Phi(w) = 1/2w^T w + C \sum \zeta_i, \text{ limitation } y(w^T x_i + b) \ge 1 \Rightarrow y(w^T x_i + b) \ge 1 - \zeta_i$ $(\zeta_i \ge 0); \text{ doesn't affect the solution of SVM.}$
- 8. ROC (Receiver Operating Characteristics): TP rate (y-axis) FP rate (x-axis), score = area below curve
- 9. Dendrogram: the hierarchical, cut to clusters.

Linear Regression

$$\begin{split} y &= x^T\beta \text{ where bias term } x_{i0} = 1, x: \ (n \times (p+1)) \\ \text{matrix, } y: \ (n \times 1) \text{ vector, } \beta: \ ((p+1) \times 1) \text{ vector.} \\ \text{Continuous } y &= x\beta^T. \ (\text{OLS, Ordinary Least Square}) \\ J(\beta) &= \frac{1}{2n}(X\beta - y)^T(X\beta - y) = \frac{1}{2n}(\beta^T X^T X\beta - y^T X\beta - \beta^T X^T y + y^T y). \\ \text{Closed form solution: } \frac{\partial J}{\partial \beta} = 0, \ \beta = (X^T X)^{-1} X^T y \\ \text{Gradient Descent: } \beta^{(t+1)} &:= \beta^{(t)} - \eta\Delta \\ \text{Batch GD: (converge) } \Delta = \frac{\partial J}{\partial \beta} = \sum_i x_i (x_i^T \beta - y_i)/n \\ \text{Stochastic GD: (n times) } \Delta = -(y_i - x_i^T \beta^{(t)})x_i \\ \text{LR with Probabilistic Interpretation: (using MLE, Maximum Livelihood Estimation) } L(\beta) = \prod_i p(y_i | x_i, \beta) = \\ \prod_i p(N(x_i^T \beta, \sigma^2)) = \prod_i \frac{1}{\sqrt{2\pi\sigma^2}} exp\{-\frac{(t_i - x_i^T \beta)^2}{2\sigma^2}\} \\ \text{Invertible } X^T X: \ \text{add } \lambda \sum_{j=1}^p \beta_j^2 \text{ to } \sum_i (y_i - x_i^T \beta)^2 \\ (\text{Ridge Regression, or linear regression with } l_2 \text{ norm}) \\ \text{Non-linear Correlation: create new terms e.g. } x^2 \end{split}$$

Logistic Regression

Generalized **linear** model (GLM). $P(Y = 1|X, \beta) = \sigma(X^T\beta) = \frac{e^{X^T\beta}}{1+e^{X^T\beta}}$ $P(Y = 0|X, \beta) = 1 - \sigma(X^T\beta) = \frac{1}{1+e^{X^T\beta}}$ $Y|X, \beta \sim Bernoulli(\sigma(X^T\beta))$ **MLE:** $L = \prod_i p_i^{y_i} (1-p_i)^{1-y_i}, p_i \text{ is } P(Y = 1|X, \beta)$ Eq to max log likelihood $L = \sum_i (y_i x_i \beta - \log(1 + e^{x_i^T\beta}))$ Gradient ascent $\beta^{new} = \beta^{old} + \eta \frac{\partial L(\beta)}{\partial \beta}$ Newton-Raphson update $\beta^{new} = \beta^{old} - (\frac{\partial^2 L(\beta)}{\partial \beta})^{-1} \frac{\partial L(\beta)}{\partial \beta \partial \beta^T}$ Cross Entropy Loss (*p* for prediction, *q* for ground truth, $(q_0, q_1)|_{y=0} = (1, 0), (q_0, q_1)|_{y=1} = (0, 1), (p_0, p_1) =$ $(P(Y = 0), P(Y = 1)): H(p, q) = -yx^T\beta + loq(1 + e^{x^T\beta})$

EM Algorithm

A framework to approach maximum likelihood. $p(x_i, z_i = C_j) = w_j f_j(x_i), \ p(x_i) = \sum_j w_j f_j(x_i)$ $p(D) = \prod_i p(x_i) = \prod_i \sum_j w_j f_j(x_i)$ $\log(p(D)) = \sum_i \log(\sum_j w_j f_j(x_i))$ **E(expectation)-step** assigns objects to clusters.

$$w_{ij}^{t+1} = p(z_i = j | \theta_j^t, x_i)$$

$$\propto p(x_i | z_i = j, \theta_j^t) p(z_i = j) = f_j(x_i) w_j$$

M(maximization)-step finds the new clustering w.r.t. conditional distribution $p(z_i = j | \theta_i^t, x_i)$.

$$\theta^{t+1} = \underset{\theta}{\operatorname{argmax}} \sum_{i} \sum_{j} w_{ij}^{t+1} \log L(x_i, z_i = j | \theta)$$

Decision Tree

m for |y| in D, v for |A|Expected Information needed to classify a tuple in D: $Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$ Info after split A: $Info_A(D) = \sum_{j=1}^{v} \frac{D_j}{D} \times Info(D_j)$ **Info Gain (ID3):** $Gain(A) = Info(D) - Info_A(D)$ Info gain biases towards multivalued attributes. $SplitInfo_A(D) = -\sum_{j=1}^{v} \frac{D_j}{D} \times \log_2(\frac{D_j}{D})$ **GR (C4.5):** GainRatio(A) = Gain(A)/SplitInfo(A)GR biases towards unbalanced splits. $Gini(D) = 1 - \sum_{j=1}^{m} p_j^2$ for impurity $Gini_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} Gini(D_j)$ **Gini (CART):** $\Delta Gini(A) = Gini(D) - Gini_A(D)$ Gini index also biases towards multivalued attributes.

STOP: same class; last attr; no sample (maj. vot.) **Avoid Over Fitting:** Pre/Post-pruning, random forest **Classification** \rightarrow **Prediction:** Maj. Vote \rightarrow e.g. Avg for leaf node.

turn to regression tree, $Var(D_j) = \sum_{y \in D_j} (y - \overline{y})^2 / |D_j|$, look for the lowest weighted average variance $Var_A(D) = \sum_{j=1}^v \frac{|D_j|}{|D|} \times Var(D_j)$ A different view: leaf = box in the plane

Random forest is a set of trees, ensemble, bagging, good at **classification**, handles large & missing data, not good at **predictions**, lack interpretation.

\mathbf{SVM}

$$\begin{split} y &= sign(\mathbf{W} \cdot \mathbf{X} + b), \text{ separating hyperplane } y = 0\\ \text{SVM searches for Maximum Marginal Hyperplane}\\ \text{To Maximize Margin } \rho &= \frac{2}{\|\mathbf{w}\|}, \text{ w. Lagrange multiplier}\\ \alpha, L(w, b, \alpha) &= \frac{1}{2}w^Tw - \sum_{i=1}^N \alpha_i(y_i(w^Tx_i + b) - 1).\\ \frac{\partial L}{\partial w} &= w - \sum_{i=1}^N \alpha_i y_i x_i = 0, \ \frac{\partial L}{\partial b} = -\sum_{i=1}^N \alpha_i y_i = 0\\ \textbf{Solution: } w &= \sum \alpha_i y_i x_i, \ b = y_k - w^T x_k\\ f(x) &= w^T x + b = \sum \alpha_i y_i x_i^T x + b \text{ default threshold } 0\\ \text{Linear v.s. Non-linear SVM: Kernel}\\ \text{Non-linear Decision Boundary: } f(x) &= w^T \Phi(x) + b = \\ \sum \alpha_i y_i K(x_i, x) + b\\ \text{Scalability: CF-Tree, Hierarchical Micro-cluster, se-} \end{split}$$

lective declustering (decluster the clusters who could be support cluster; support cluster: centroid on support vector)

Perceptron (Single Unit)

$$x_i \xrightarrow{w_i} \sum (+b) \xrightarrow{f} o$$

Input vector x, Weight vector w, Bias b, weighted sum, going through activation function f, reach output o.

Backpropagation (BP)

Stochastic GD + Chain Rule Special case: Sigmoid + Square loss, 2 layers Assume: i, j, k are input, hidden, output layers' denotion, and O for output, T for true value. $Err_k = O_k(1 - O_k)(T_k - O_k), Err_j = O_j(1 - O_j)\sum_k Err_k w_{jk}, w_{ij} = w_{ij} + \eta Err_j O_i$ and $w_{jk} = w_{jk} + \eta Err_k O_j, \theta_j = \theta_j + \eta Err_j$ and $\theta_k = \theta_k + \eta Err_k$. $\frac{\partial J}{\partial w_{ij}} = \frac{\partial J}{\partial O_k} \frac{\partial O_k}{\partial O_j} \frac{\partial O_j}{\partial w_{ij}} = -\sum_k [(T_k - O_k)][O_k(1 - O_k)w_{jk}][O_j(1 - O_j)O_i]$

Neural Network (NN)

 $n_{layers} = n_{hidden} + n_{output}(1)$ Feed-forward, Non-linear regression, capable of any continuous function. Backpropagation is used for learning.

k - Nearest Neighbors (kNN)

Lazy learning (instead of eager), instance-based Consider k nearest neighbors; maj. voting or average. (Could be distance-weighted.) Curse of dimensionality: influence of noise Get rid of irrelevant features; select proper k. Proximity refers to similarity or **dissimilarity**. Always applies to binary values. If nominal, could do simple matching, or use a series of binary to represent a non-binary; ordinal: rank, normalize $z_{if} = \frac{r_{if}-1}{M_f-1}$. Proximity could be measured by $\frac{|(0,1)|+|(1,0)|}{all}$ for symmetric variables, $\frac{|(0,1)|+|(1,0)|}{all-|(0,0)|}$ or Jaccard coefficient (similarity) $\frac{|(1,1)|}{all-|(0,0)|}$ for asymmetric. Mixed type attributes: weighted combine. Another method: cosine similarity $cos(d_1, d_2)$

Evaluation: Classification

Holdout method; Cross-validation (k-fold) LOO. Confusion Matrix: True / False Positive / Negative Accuracy = (TP + TN) / All Error Rate = (FP + FN) / All Sensitivity = TP / P (P = TP + FN) Specificity = TN / N (N = FP + TN) Precision = TP / P' (P' = TP + FP) Recall = TP / P = Sensitivity F_1 / F-score = $\frac{2 \times Precision \times Recall}{Precision + Recall}$ $F_{\beta} = \frac{(1+\beta^2) \times Precision \times Recall}{\beta^2 \times Precision + Recall}$ (R: P = β : 1) ROC curve: TP rate (y) - FP rate (x). (area under) TPR = TP / P, FPR = FP / N

Clustering

K-means: $J = \sum_{j=1}^{k} \sum_{i} w_{ij} ||x_i - c_j||^2$ Assign $w_{ij} = 1$ to each x_i closest c_j ; assign the center to be new centroid; stop when no change. O(tkn). For continuous, convex-shaped data, sensitive to noise. **K-modes:** mean \rightarrow mode, for categorical data **K-medoids:** representative objects, e.g. PAM (s) **Hierarchical:** bottom-up **Agglomerative Nesting** (**AGNES**) merges two closest clusters until end up in 1; top-down **DIANA** (**Divisive Analysis**). $O(n^2)$. **Cluster Distance:** Single link for min element-wise dist; Complete link for max; average for avg element pairs dist; centroid, medoid (center obj).

DBSCAN: Set $Eps \ \epsilon$ and MinPts. Neighborhood defined as $N_{\epsilon}(q) : \{p \in D | dist(p,q) \leq \epsilon\}$. Core point $|N_{\epsilon}(q)| \geq MinPts$. p is **directly density-reachable** from q if q is core point and $p \in N_{\epsilon}(q)$; **densityreachable** if $q \rightarrow p_2 \rightarrow \cdots \rightarrow p$; **density-connected** if $o \rightarrow \cdots \rightarrow p \land o \rightarrow \cdots \rightarrow q$. Cluster: max set density-connected points. Individual points are **noise**. DFS $O(n \log n)$ w. spacial index, else $O(n^2)$. **Mixture Model:** soft clustering $(w_{ij} \in [0, 1]$ rather than $w_{ij} \in \{0, 1\})$, joint prob of object *i* and cluster C_j : $p(x_i, z_i = C_j) = w_j f_j(x_i)$, using EM algorithm.

Gaussian Mixture Model (GMM): \supset k-means Generative model, for each object, pick cluster Z, from $X|Z \sim N(\mu_Z, \sigma_Z^2)$ sample value; Overall likelihood function $L(D|\theta) = \prod_i \sum_j w_j p(x_i|\mu_j, \sigma_j^2)$; $\mathbf{E} w_{ij}^{t+1} = (w_j^t p(x_i|\mu_j^t, (\sigma_j^2)^t))/(\sum_k w_k^t p(x_i|\mu_k^t, (\sigma_k^2)^t)),$ $\mathbf{M} \ \mu_j^{t+1} = (\sum_i w_{ij}^{t+1} x_i)/(\sum_i w_{ij}^{t+1}), \ (\sigma_j^2)^{t+1} = (\sum_i w_{ij}^{t+1} (x_i - \mu_j^{t+1})^2/(\sum_i w_{ij}^{t+1}), w_j^{t+1} = \sum_i w_{ij}^{t+1}/n$ (in 1-d case)

Why EM works? E-Step find **tight** lower bound L of ℓ at θ_{old} , M-Step find θ_{new} to maximize the lower bound. $\ell(\theta_{new}) \ge L(\theta_{new}) \ge L(\theta_{old}) = \ell(\theta_{old})$

Evaluation: Clustering

extrinsic (supervised) vs. intrinsic (unsupervised) $\begin{array}{l}purity(C,\Omega) = \frac{1}{N}\sum_{K}\max_{j}|c_{k}\cap\omega_{j}| \ (C \ \text{out}, \ \Omega \ \text{truth})\\ \text{Normalized Mutual Information:}\\ NMI(C,\Omega) = \frac{I(C,\Omega)}{\sqrt{H(C)H(\Omega)}}\\ I(C,\Omega) = \sum_{k}\sum_{j}P(c_{k}\ \cap\ \omega_{j})\log\frac{P(c_{k}\cap\omega_{j})}{P(c_{k})P(\omega_{j})} = \sum_{k}\sum_{j}\frac{|c_{k}\cap\omega_{j}|}{N}\log\frac{N|c_{k}\cap\omega_{j}|}{|c_{k}||\omega_{j}|}\\ H(\Omega) = -\sum_{j}P(\omega_{j})\log P(\omega_{j}) = -\sum_{j}\frac{|\omega_{j}|}{N}\log\frac{|\omega_{j}|}{N}\\ \text{Precision and Recall: same / different class / cluster}\\ \text{Select k: plot square loss - k, larger k smaller cost, find$ **knee** $points; BIC penaltize; Cross validation\end{array}$

Midterm Reviews

- $\sigma = \sqrt{\frac{\sum (x_i \overline{x})^2}{n}}$ where |x| = n
- parallel line $d = \frac{|c_2| c_1|}{\sqrt{a^2 + b^2}}$ where ax + by + c = 0
- $\ln(e^x) = x, e = 2.718281828459 \dots \approx 2.7183$
- Likelihood is product of density (/ probability), log likelihood $logL(\theta) = \ell(\theta) = \sum_{allx} \log(P(X = x))$, find the max means $\ell'(\theta) = 0$
- $A \times B = C$ then $c_{ij} = a_{i*} \cdot b_{*j}$
- Newton-Raphson update converges fast
- Lasso: l_1 norm's another name
- For binary class, the entropy $H = \sum p \log(p)$, $H(p) = p \log(p) + (1-p) \log(1-p)$, H(1-p) = H(p), H is the maximum when p = 0.5. If \log_2 is chosen, H(0.5) = 1
- Supervised clustering pairs up the data points C_n^2 , same-same = TP, diff-diff = TN. (n2) written in vertex means C_n^2 .
- NN is sometimes written in the form of number on edge and number on node, then the number on edge means weight, the number on node means bias. Don't forget bias. In a way bias could be regarded as a threshold. Input layer $O_i = x_i$
- p features (p-d input nodes), 3 + 4 hidden nodes, 2 hidden layers, k output nodes, then 3p + 3 * 4 + 4k weights are needed, 3 + 4 + kbiases are needed.
- In KNN, larger K causes under-fitting and smaller K causes over-fitting.
- Method 1 to calculate A^{-1} : do row-wise options to [A|E], change it into $[E|A^{-1}]$

• Method 2 to calculate
$$A^{-1}$$
: $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

• Hessian matrix: second order partial deriv.

•
$$H_{\text{LR}}(p,q) = -yx^T\beta + \log(1 + \exp(x^T\beta)) \ (y = 0/1,$$

After Midterm			
Model	Data Type	Task Type	
Apriori	Set	Frequent Pat-	
		tern Mining	
FP Growth	Set	Frequent Pat-	
		tern Mining	
GSP	Sequence	Frequent Pat-	
		tern Mining	
PrefixSpan	Sequence	Frequent Pat-	
		tern Mining	
DTW	Sequence	Similarity Se-	
		arch	
Naive Bayes for	Text	Classification	
text			
pLSA	Text	Clustering	

Frequent Pattern Mining Basis

```
Each data point is also called "transaction".
pattern = itemsets + association rules
 otivation: find inherent regularities on data
K-itemset: a set of K items
absolute support (support count): frequency / occur
relative support: probability / fraction
Frequent: if an itemset's support > threshold
rule X \to Y: support = P(XY), confidence = P(Y|X)
closed patterns X: X is frequent, \forall Y \supset X,
support(Y) \neq support(X)
maximum patterns X: X is frequent, \forall Y \supset X,
support(Y) < threshold, Y \text{ is not frequent}
Closed patterns is a lossless compression of frequency
patterns. (reduce # pattern & rules!)
Scalable mining methods: Apriori, FP-Growth, Eclat
*ECLAT: Frequent Pattern Mining with Vertical Data
```

Apriori

A candidate generation-and-test approach

The **Apriori property** of frequent patterns: any nonempty subset of a frequent itemset is also frequent. Apriori **pruning**: having infrequent subset = not frequent (not to be generated / tested)

Method work-flow: **initially**, scan DB once for frequent 1-itemset (L_1) (and have all items in every transaction **ordered** in decreasing frequency order); **recursively** generate k candidate itemsets (C_k) from k-1 frequent itemsets (L_{k-1}) (join + **prune**) (join = self-joining L_{k-1} , join l_1, l_2 only when $l_1[: k - 2] ==$ $l_2[: k - 2]$ and $l_1[k - 1] < l_2[k - 1]$); test the candidates against DB; **terminate** when no frequent or candidate set can be generated.

 $TDB \to C_1 \to L_1 \to C_2 \to C_2(pruned) \to L_2...,$ finally return all L_k (**k** DB scans) (argmax_k $|L_k| \approx 2$)

FP Growth

A frequent pattern-growth approach.

Apriori limit: BFS \rightarrow multi-scan; C_k workload Improving Apriori by reduce passes of TDB scans, shrink n_candidates, reduce workload of support counting of candidates thus facilitate it.

Partition: scan TDB twice. Partition, find local frequent (relative support), any frequent set in TDB must be frequent in at least one partition.

Hash-based technique: based on hash-map, focus on C_2 sets map to the same index. Count supports on a hash-tree. (TID - T - $\{C_2\}$)

Sampling: select a sample of TDB, do Apriori, back to TDB 1-scan verify boarders (abcd not ab) of closure frequent patterns, scan TDB again find missed.

FP-Tree: compressed from the DB. Scan DB once, sort frequent 1-itemset descending order to be f-list and scan it again. Header Table (columns: Item, frequency, head-pointer) + prefix tree, with counts at nodes, all nodes linked with a chain in order from the head-pointer. Root node empty {}, other node are like a: 3.

FP-Growth: DFS, avoid explicit candidate generation. Grow long patterns from short ones using local frequent items only. Recursively mine FP-Tree by conditional pattern base \rightarrow conditional FP – Tree until the tree has a single path or empty.

Projection (DB | *itemset*): all transactions having the *itemset*. If d is freq in DB|abc, abcd freq.

Form p's conditional pattern base: accumulate all transformed prefix paths of the item p. e.g. If there's a path $\{\} - f : 4 - c : 3 - a : 3 - m : 3 - p : 2$, the cond. base of p contains: fcam : 2

For each pattern-base accumulate the count for each item and construct the conditional FP-tree.

The answer of frequent patterns add back the base. e.g. $\{\} - a : 3 - b : 2$ for DB—c, then the frequent patterns are ac, bc, abc.

Project on each one **except** the most frequent item, do recursively, each time finds frequent x in DB|s to be added to s so that sx be new frequent pattern. Single Prefix-path: a special case, solution is to divide

and concatenate

Scaling: parallel / partition projection (of the frequent items) (parallel: all at once, partition: in frequency order)

Runtime grows **slowly** with the decreasing of threshold, **divide-and-conquer**, compressed DB with no candidate generation and test, scan entire DB once

Eclat

Mining by exploring vertical data format, similar with inverted index. Having a t-id list that stores the list of transaction ids where a itemset appears, t(A). t(X) = t(Y) means P(XY) is high; $t(X) \subset t(Y)$ means P(Y|X) is high. diffset is used to accelerate mining (keep track of differences of tids).

Association Rules

 $\begin{aligned} & confidence(A\Rightarrow B) = P(B|A) = \frac{P(AB)}{P(A)} \\ & \text{rule is from a frequent pattern } l \text{ and all its non-empty subsets.} \\ & Lift(AB) = \frac{P(AB)}{P(A)P(B)} = 1 \text{ independent, } > 1 \text{ positively correlated} \\ & \chi^2 = \sum \frac{(Observed-Expected)^2}{Expected} \text{ has a table to check} \\ & p-value = P(\chi^2 > *), \text{ if } p-value \text{ is small enough, it } \\ & \text{rejects the null hypothesis, so A and B are dependent} \\ & all_confidence = \min\{P(A|B), P(B|A)\} \\ & max_confidence = \max\{P(A|B), P(B|A)\} \\ & Kulczynski = \frac{1}{2}(P(A|B) + P(B|A)) \\ & \text{Cosine: } \cos(A, B) = \sqrt{P(A|B) \times P(B|A)} \\ & \text{Lift and } \chi^2 \text{ are affected by null-transaction, that is } \\ & \text{the "not A and not B"s.} \\ & \text{Imbalance Ratio (IR): } IR(A, B) = \frac{|sup(A) - sup(B)|}{sup(A) + sup(B) - sup(AB)} \\ & \text{where } sup \text{ refers to supports.} \end{aligned}$

GSP

element / event is a non-empty unordered set of items, sequence is an ordered list of events, length is the number of instances of items included. Always written like $\langle a(bc)de(fgh)\rangle$. A is B's subsequence means: any elements in A is a subset of a corresponding element in B, those elements in B are in same order they appear in A. Start from the same L_1 , the major difference is join.

In this case, s_1 and s_2 can be joined only if s_1 with 1^{st} item dropped and s_2 has the last item dropped are the same. Joined together: $s_1[0], s_{mid}, s_2[-1]$. Note that all the items in any element are "sorted" by f-list.

SPADE

DB : { $\langle SID, EID, Items \rangle$ } \Rightarrow Item(SubSeq) : { $\langle SID, EID \rangle$ }, and then join by growing the subsequences one at a time by Apriori (joining two of those { $\langle SID, EID \rangle$ } tables for Items / Sub-Sequences, e.g. $a, b \Rightarrow ab, ba \Rightarrow aba, bab$.

Similar **limitations** with GSP: costly generation & multiple scans by BFS & long patterns

Prefix Span

:: **blank space** used when the last *item* from *prefix* is from the first *element* of *suffix*.

Prefix-based **projection** (α'): a projection of α w.r.t. prefix β is the maximum subsequence of α with prefix β . e.g. $\alpha = \langle a(abc)(ac)d(cf)\rangle, \ \beta = \langle ad\rangle$, then $\alpha' = \langle ad(cf)\rangle$

Start from L_1 , project the database into $|L_1|$ projected database accordingly, mine each subset recursively via corresponding projected databases. (e.g. a-proj \Rightarrow ab-proj)

Note that a and $_a$ are **different** in counting frequencies. With suffix last element s_1 , $_a$ only when $_a$ appears at the front of the suffix, or see (s_1a*) .

No candidate needed, major cost is projection, projected DB keeps shrinking and could be improved by **pseudo-projection** (using pointers to point to the division point of the prefix and suffix to save time and space, work well unless DB is too big for main memory, disk-access is slow).

Dynamic Time Warping (DTW)

Time series $Y = \{Y_t : t \in T\}$, time-index T. An observation of time series with length N could be represented as $Y = \{y_1, y_2, \dots, y_N\}.$ **Euclidean** distance: $d(C,Q) = (\sum |c_i - q_i|^p)^{\frac{1}{p}} (l_p)$ L_p norm cannot deal with offset and scaling. (sol: normalization $c'_i = \frac{c_i - \mu(C)}{\sigma(C)}$ Warp time axis? Even with different length. $X = \{x_1, ..., x_N\}, Y = \{y_1, ..., y_M\}, \text{ find alignment}$ between s.t. overall cost is minimized. Local distance (cost) between x_n, y_m : $c(x_n, y_m)$. We could have an $N \times M$ matrix of costs between all pairs. Our goal: find an (N, M)-warping path p = (p_1, p_2, \dots, p_L) with $p_l = (n_l, m_l)$, conditions: (1) boundary, $p_1 = (1, 1), p_L = (N, M);$ (2) monotonicity, n_l, m_l non-decreasing with l; (3) step size, 1, $p_{l+1} - p_l \in \{(0,1), (1,0), (1,1)\}$ Solving by DP: $D(n,m) = \min\{D(n-1,m), D(n,m-1)\}$ 1), D(n-1, m-1) + $c(x_n, y_m)$, where D(n, m) denotes the DTW distance between $X(1, \ldots n)$ and Y(1,...m). D(N,M) = DTW(X,Y), D(n,1) = $\sum_{k=1}^{n} c(x_k, y_1), D(1, m) = \sum_{k=1}^{m} c(x_1, y_k).$ O(NM) time complexity. Trace back to find p^* from D, given that p(l) =(n,m): p_{l-1} is (1,m-1) if n = 1, (n-1,1) if m = 1, and otherwise argmin $\{D(n-1, m-1), D(n-1)\}$ (1, m), D(n, m-1)

Naive Time and Frequency Domain

Sometimes series data need to be transformed into Fourier domain to evaluate. $X_f = \frac{1}{\sqrt{n}} \sum_{t=0}^{n-1} x_t \exp(-j2\pi f t/n), f = 0, 1, \dots, n$

Parseval's Theorem: $\sum_{t=0}^{n-1} |x_t|^2 = \sum_{f=0}^{n-1} |X_f|^2$, Euclidean dist in time / freq domains are the same. Keep only first few coefficients brings no false dismissals.

Prediction

 $\begin{array}{lll} j^{th} & \text{lag of } Y_t \colon Y_{t-j}, \text{ first diff } \Delta Y_t = Y_t - Y_{t-j}, j^{th} \text{ autocorrelation } \rho_j \colon corr(Y_t,Y_{t-j}) = \frac{cov(Y_t,Y_{t-j})}{\sqrt{var(Y_t)var(Y_{t-j})}}, \ cov(Y_t,Y_{t-j}) = \frac{1}{T-j-1} \sum_{t=j+1}^T (Y_t - \overline{Y}_{j+1,T})(Y_{t-j} - \overline{Y}_{1,T-j}). \ \text{AR}(1) \ \text{check } Y_t = \beta_0 + \beta_1 Y_{t-1} + u_t, \ \beta_1 = 0 \ \text{for useless.} \end{array}$

Naive Bayes for Text

Bayes' Theorem: $P(h|X) = \frac{P(X|h)P(h)}{P(X)}$ X data samples (evidence), h : class(X) = Y, P(X)fixed, $P(h) = \pi$ prior probability, P(X|h) likelihood $\prod_n \beta_{y_n}^{x_n}$, $P(X) = \sum_h P(X|h)P(h)$, P(h|X) posterior probability. Maximum a posteriori $h_{MAP} =$ $\operatorname{argmax}_h P(X|h)P(h)$. $y^* = \operatorname{argmax}_y \prod_n \beta_{y_n}^{x_n} \times \pi_y =$ $\operatorname{argmax}_y \sum_n x_n \log \beta_{y_n} + \log \pi_y$ **Optimization**: $n \mod j$ class, D documents, ddocument, $\beta_{jn} = \frac{\operatorname{count of word n in class j}}{\operatorname{count of all words in class j}}$ (smoothing: $\frac{\cdots + 1}{\cdots + N}$), $\pi_j = \frac{\operatorname{number of d in class j}}{|D|}$ For test document t, $p(y = c|x_t) \propto p(y = c) \times$ $\prod_n (\beta_{cn})_{tn}^x$ where x_{tn} is n's appearance in x_t . A generative model (not discriminative - like log reg). Generative model P(XY), discriminative P(Y|X) **Multinoulli** distribution is two options, multi-tryout $(z \sim multinoulli(\pi))$, while **Multinomial** means multi-class, one tryout $((x_d \sim multinoumial(\beta_d)))$.

\mathbf{pLSA}

corpus: a collection of documents, word w, doc d, topic z, word count in doc c(w, d), word distribution each topic $\beta_{zw} = p(w|z)$, topic (soft) distribution each document $\theta_{dz} = p(z|d)$. max log $L = \sum_{dw} c(w, d) \log \sum_{z} \theta_{dz} \beta_{zw}$ s.t. $\sum_{z} \theta_{dz} =$

max log $D = \sum_{dw} c(w, a) \log \sum_{z} c_{dz} \rho_{zw}$ s.e. $\sum_{z} c_{dz} = 1$, $\sum_{w} \beta_{zw} = 1$ is optimized by EM until converge. Generally E: $p(z|w,d) \propto p(w|z,d)p(z|d) = \beta_{zw}\theta_{dz}$, M: $\beta_{zw} \propto \sum_{d} p(z|w,d)c(w,d)$, $\theta_{dz} \propto \sum_{w} p(z|w,d)c(w,d)$. e.g. E: $p(z|w,d) = \frac{\beta_{zw}\theta_{dz}}{\sum_{z'}\beta_{zw}\theta_{dz'}}$, M: $\beta_{zw} = \frac{\sum_{d} p(z|w,d)c(w,d)}{\sum_{w',d} p(z|w',d)c(w',d)}$, $\theta_{dz} = \frac{\sum_{w} p(z|w,d)c(w,d)}{N_d}$, where N_d is the count of words in the document.